These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 19549942)

  • 21. Baseflow nitrate in relation to stream order and agricultural land use.
    Kang S; Lin H; Gburek WJ; Folmar GJ; Lowery B
    J Environ Qual; 2008; 37(3):808-16. PubMed ID: 18453401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A conceptual framework of agricultural land use planning with BMP for integrated watershed management.
    Qi H; Altinakar MS
    J Environ Manage; 2011 Jan; 92(1):149-55. PubMed ID: 20863609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategy for cost-effective BMPs of non-point source pollution in the small agricultural watershed of Poyang Lake: A case study of the Zhuxi River.
    Liu W; Zhang L; Wu H; Wang Y; Zhang Y; Xu J; Wei D; Zhang R; Yu Y; Wu D; Xie X
    Chemosphere; 2023 Aug; 333():138949. PubMed ID: 37196789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined monitoring and modeling indicate the most effective agricultural best management practices.
    Easton ZM; Walter MT; Steenhuis TS
    J Environ Qual; 2008; 37(5):1798-809. PubMed ID: 18689741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sediment budgets and source determinations using fallout Cesium-137 in a semiarid rangeland watershed, Arizona, USA.
    Ritchie JC; Nearing MA; Rhoton FE
    J Environ Radioact; 2009 Aug; 100(8):637-43. PubMed ID: 19559510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of diffuse and concentrated pollutant loads at the watershed-scale: an Italian case study.
    Candela A; Freni G; Mannina G; Viviani G
    Water Sci Technol; 2009; 59(11):2125-35. PubMed ID: 19494451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activity entering water resources.
    Goss M; Richards C
    J Environ Manage; 2008 Jun; 87(4):623-32. PubMed ID: 18158213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorus load reduction goals for Feitsui Reservoir Watershed, Taiwan.
    Chou WS; Lee TC; Lin JY; Yu SL
    Environ Monit Assess; 2007 Aug; 131(1-3):395-408. PubMed ID: 17171261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution.
    Geng R; Wang X; Sharpley AN; Meng F
    PLoS One; 2015; 10(8):e0130607. PubMed ID: 26313561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ranking methods to set restoration and remediation priorities on a watershed scale.
    Stringfellow WT
    Water Sci Technol; 2008; 58(10):2025-30. PubMed ID: 19039184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of hydrodynamically rough grassed waterways on dissolved reactive phosphorus loads coming from agricultural watersheds.
    Fiener P; Auerswald K
    J Environ Qual; 2009; 38(2):548-59. PubMed ID: 19202025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy and precision of the volume-concentration method for urban stormwater modeling.
    Park MH; Swamikannu X; Stenstrom MK
    Water Res; 2009 Jun; 43(11):2773-86. PubMed ID: 19439339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.
    Sommerlot AR; Nejadhashemi AP; Woznicki SA; Giri S; Prohaska MD
    J Environ Manage; 2013 Sep; 127():228-36. PubMed ID: 23764473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of pollutant loads considering dam operation in Han River Basin by BASINS/Hydrological Simulation Program-FORTRAN.
    Jung KW; Yoon CG; Jang JH; Kong DS
    Water Sci Technol; 2008; 58(12):2329-38. PubMed ID: 19092211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of regression methodology with low-frequency water quality sampling to estimate constituent loads for ephemeral watersheds in Texas.
    Toor GS; Harmel RD; Haggard BE; Schmidt G
    J Environ Qual; 2008; 37(5):1847-54. PubMed ID: 18689746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating conservation program success with Landsat and SWAT.
    White MJ; Storm DE; Busteed P; Stoodley S; Phillips SJ
    Environ Manage; 2010 May; 45(5):1164-74. PubMed ID: 20213232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffuse pollution: lessons from soil conservation policies.
    Warkentin BP
    Water Sci Technol; 2001; 44(7):197-202. PubMed ID: 11724488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multivariate analysis of paired watershed data to evaluate agricultural best management practice effects on stream water phosphorus.
    Bishop PL; Hively WD; Stedinger JR; Rafferty MR; Lojpersberger JL; Bloomfield JA
    J Environ Qual; 2005; 34(3):1087-101. PubMed ID: 15888895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of seasonal variation in precipitation on estimation of non-point source pollution.
    Lin YC; Kao JJ
    Water Sci Technol; 2003; 47(7-8):299-304. PubMed ID: 12793693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of analytical hierarchy process for effective selection of agricultural best management practices.
    Giri S; Nejadhashemi AP
    J Environ Manage; 2014 Jan; 132():165-77. PubMed ID: 24309231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.