These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19550204)

  • 1. It pays to have a spring in your step.
    Sawicki GS; Lewis CL; Ferris DP
    Exerc Sport Sci Rev; 2009 Jul; 37(3):130-8. PubMed ID: 19550204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W; Wu S; Zhou T; Xiong C
    Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shorter heels are linked with greater elastic energy storage in the Achilles tendon.
    Foster AD; Block B; Capobianco F; Peabody JT; Puleo NA; Vegas A; Young JW
    Sci Rep; 2021 Apr; 11(1):9360. PubMed ID: 33931686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping.
    Astley HC; Roberts TJ
    Biol Lett; 2012 Jun; 8(3):386-9. PubMed ID: 22090204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint work and power associated with acceleration and deceleration in tammar wallabies (Macropus eugenii).
    McGowan CP; Baudinette RV; Biewener AA
    J Exp Biol; 2005 Jan; 208(Pt 1):41-53. PubMed ID: 15601876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical effects of passive hip springs during walking.
    Haufe FL; Wolf P; Riener R; Grimmer M
    J Biomech; 2020 Jan; 98():109432. PubMed ID: 31662197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compliance, actuation, and work characteristics of the goat foreleg and hindleg during level, uphill, and downhill running.
    Lee DV; McGuigan MP; Yoo EH; Biewener AA
    J Appl Physiol (1985); 2008 Jan; 104(1):130-41. PubMed ID: 17947498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationships between muscle, external, internal and joint mechanical work during normal walking.
    Sasaki K; Neptune RR; Kautz SA
    J Exp Biol; 2009 Mar; 212(Pt 5):738-44. PubMed ID: 19218526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External work and potential for elastic storage at the limb joints of running dogs.
    Gregersen CS; Silverton NA; Carrier DR
    J Exp Biol; 1998 Dec; 201(Pt 23):3197-210. PubMed ID: 9808833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo behavior of the human soleus muscle with increasing walking and running speeds.
    Lai A; Lichtwark GA; Schache AG; Lin YC; Brown NA; Pandy MG
    J Appl Physiol (1985); 2015 May; 118(10):1266-75. PubMed ID: 25814636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanical function of the tibialis posterior muscle and its tendon during locomotion.
    Maharaj JN; Cresswell AG; Lichtwark GA
    J Biomech; 2016 Oct; 49(14):3238-3243. PubMed ID: 27545079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo behaviour of human muscle tendon during walking.
    Fukunaga T; Kubo K; Kawakami Y; Fukashiro S; Kanehisa H; Maganaris CN
    Proc Biol Sci; 2001 Feb; 268(1464):229-33. PubMed ID: 11217891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic ankle muscle-tendon interactions are adjusted to produce acceleration during walking in humans.
    Farris DJ; Raiteri BJ
    J Exp Biol; 2017 Nov; 220(Pt 22):4252-4260. PubMed ID: 28954818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.
    Lai A; Schache AG; Lin YC; Pandy MG
    J Exp Biol; 2014 Sep; 217(Pt 17):3159-68. PubMed ID: 24948642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flip-flops do not alter the neuromuscular function of the gastrocnemius muscle and tendon during walking in children.
    Maharaj JN; Barber L; Walsh HPJ; Carty CP
    Gait Posture; 2020 Mar; 77():83-88. PubMed ID: 32004950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping.
    Robertson BD; Sawicki GS
    J Theor Biol; 2014 Jul; 353():121-32. PubMed ID: 24641822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping.
    Farris DJ; Robertson BD; Sawicki GS
    J Appl Physiol (1985); 2013 Sep; 115(5):579-85. PubMed ID: 23788578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.