These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 19550454)

  • 1. Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography.
    Szkulmowska A; Szkulmowski M; Szlag D; Kowalczyk A; Wojtkowski M
    Opt Express; 2009 Jun; 17(13):10584-98. PubMed ID: 19550454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography.
    An L; Wang RK
    Opt Express; 2008 Jul; 16(15):11438-52. PubMed ID: 18648464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image Analysis of Optical Coherence Tomography Angiography.
    Coscas G; Lupidi M; Coscas F
    Dev Ophthalmol; 2016; 56():30-6. PubMed ID: 27023365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second.
    Huber R; Adler DC; Srinivasan VJ; Fujimoto JG
    Opt Lett; 2007 Jul; 32(14):2049-51. PubMed ID: 17632639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography.
    Szkulmowski M; Grulkowski I; Szlag D; Szkulmowska A; Kowalczyk A; Wojtkowski M
    Opt Express; 2009 Aug; 17(16):14281-97. PubMed ID: 19654837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics.
    Kurokawa K; Sasaki K; Makita S; Hong YJ; Yasuno Y
    Opt Express; 2012 Sep; 20(20):22796-812. PubMed ID: 23037430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography.
    Tao YK; Kennedy KM; Izatt JA
    Opt Express; 2009 Mar; 17(5):4177-88. PubMed ID: 19259254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-high-speed volumetric tomography of human retinal blood flow.
    Schmoll T; Kolbitsch C; Leitgeb RA
    Opt Express; 2009 Mar; 17(5):4166-76. PubMed ID: 19259253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid.
    Fingler J; Readhead C; Schwartz DM; Fraser SE
    Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):5055-9. PubMed ID: 18566457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heidelberg Spectralis Optical Coherence Tomography Angiography: Technical Aspects.
    Coscas G; Lupidi M; Coscas F
    Dev Ophthalmol; 2016; 56():1-5. PubMed ID: 27022921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZEISS Angioplex™ Spectral Domain Optical Coherence Tomography Angiography: Technical Aspects.
    Rosenfeld PJ; Durbin MK; Roisman L; Zheng F; Miller A; Robbins G; Schaal KB; Gregori G
    Dev Ophthalmol; 2016; 56():18-29. PubMed ID: 27023249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-gated Fourier-domain optical coherence tomography.
    Muller MS; Webster PJ; Fraser JM
    Opt Lett; 2007 Nov; 32(22):3336-8. PubMed ID: 18026299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography.
    Ahn YC; Jung W; Chen Z
    Opt Lett; 2007 Jun; 32(11):1587-9. PubMed ID: 17546197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography.
    Szkulmowski M; Szkulmowska A; Bajraszewski T; Kowalczyk A; Wojtkowski M
    Opt Express; 2008 Apr; 16(9):6008-25. PubMed ID: 18545302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Coherence Tomography Angiography in Healthy Subjects.
    Coscas G; Lupidi M; Coscas F
    Dev Ophthalmol; 2016; 56():37-44. PubMed ID: 27023473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doppler variance imaging for three-dimensional retina and choroid angiography.
    Yu L; Chen Z
    J Biomed Opt; 2010; 15(1):016029. PubMed ID: 20210473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels.
    Werkmeister RM; Dragostinoff N; Pircher M; Götzinger E; Hitzenberger CK; Leitgeb RA; Schmetterer L
    Opt Lett; 2008 Dec; 33(24):2967-9. PubMed ID: 19079508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable velocity range imaging of the choroid with dual-beam optical coherence angiography.
    Jaillon F; Makita S; Yasuno Y
    Opt Express; 2012 Jan; 20(1):385-96. PubMed ID: 22274362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.