These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 19550467)
21. Principles and Design of a Zeeman-Sisyphus Decelerator for Molecular Beams. Fitch NJ; Tarbutt MR Chemphyschem; 2016 Nov; 17(22):3609-3623. PubMed ID: 27629547 [TBL] [Abstract][Full Text] [Related]
22. Stark deceleration of CaF molecules in strong- and weak-field seeking states. Wall TE; Kanem JF; Dyne JM; Hudson JJ; Sauer BE; Hinds EA; Tarbutt MR Phys Chem Chem Phys; 2011 Nov; 13(42):18991-9. PubMed ID: 21776450 [TBL] [Abstract][Full Text] [Related]
23. Deceleration of supersonic beams using inhomogeneous electric and magnetic fields. Hogan SD; Motsch M; Merkt F Phys Chem Chem Phys; 2011 Nov; 13(42):18705-23. PubMed ID: 21874183 [TBL] [Abstract][Full Text] [Related]
24. Stopping paramagnetic supersonic beams: the advantage of a co-moving magnetic trap decelerator. Lavert-Ofir E; David L; Henson AB; Gersten S; Narevicius J; Narevicius E Phys Chem Chem Phys; 2011 Nov; 13(42):18948-53. PubMed ID: 21897990 [TBL] [Abstract][Full Text] [Related]
25. Modification of the velocity distribution of H(2) molecules in a supersonic beam by intense pulsed optical gradients. Ramirez-Serrano J; Strecker KE; Chandler DW Phys Chem Chem Phys; 2006 Jul; 8(25):2985-9. PubMed ID: 16880911 [TBL] [Abstract][Full Text] [Related]
26. Getting a grip on the transverse motion in a Zeeman decelerator. Dulitz K; Motsch M; Vanhaecke N; Softley TP J Chem Phys; 2014 Mar; 140(10):104201. PubMed ID: 24628161 [TBL] [Abstract][Full Text] [Related]
27. Decelerating and Trapping Large Polar Molecules. Patterson D Chemphyschem; 2016 Nov; 17(22):3790-3794. PubMed ID: 27451981 [TBL] [Abstract][Full Text] [Related]
29. Study of the characteristics of the system: Ion source-ion decelerator. Obukhov VA; Svotina VV Rev Sci Instrum; 2023 Feb; 94(2):023307. PubMed ID: 36859019 [TBL] [Abstract][Full Text] [Related]
32. Effects of rotational excitation on decay rates of long-lived Rydberg states in NO. Rayment MH; Hogan SD J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37877493 [TBL] [Abstract][Full Text] [Related]
33. Molecular beam collisions with a magnetically trapped target. Sawyer BC; Stuhl BK; Wang D; Yeo M; Ye J Phys Rev Lett; 2008 Nov; 101(20):203203. PubMed ID: 19113337 [TBL] [Abstract][Full Text] [Related]
34. Rydberg-state-enabled deceleration and trapping of cold molecules. Hogan SD; Seiler Ch; Merkt F Phys Rev Lett; 2009 Sep; 103(12):123001. PubMed ID: 19792428 [TBL] [Abstract][Full Text] [Related]
35. Demonstration of three-dimensional electrostatic trapping of state-selected Rydberg atoms. Hogan SD; Merkt F Phys Rev Lett; 2008 Feb; 100(4):043001. PubMed ID: 18352264 [TBL] [Abstract][Full Text] [Related]
36. A linear AC trap for polar molecules in their ground state. Schnell M; Lützow P; Veldhoven Jv; Bethlem HL; Küpper J; Friedrich B; Schleier-Smith M; Haak H; Meijer G J Phys Chem A; 2007 Aug; 111(31):7411-9. PubMed ID: 17566990 [TBL] [Abstract][Full Text] [Related]
37. Evaporative cooling of the dipolar hydroxyl radical. Stuhl BK; Hummon MT; Yeo M; Quéméner G; Bohn JL; Ye J Nature; 2012 Dec; 492(7429):396-400. PubMed ID: 23257881 [TBL] [Abstract][Full Text] [Related]
38. Dependences of Q-branch integrated intensity of linear-molecule pendular spectra on electric-field strength and rotational temperature and its potential applications. Deng M; Wang H; Wang Q; Yin J Sci Rep; 2016 May; 6():26776. PubMed ID: 27231057 [TBL] [Abstract][Full Text] [Related]
39. Dynamical processes in Rydberg-Stark deceleration and trapping of atoms and molecules. Seiler C; Hogan SD; Merkt F Chimia (Aarau); 2012; 66(4):208-11. PubMed ID: 22613151 [TBL] [Abstract][Full Text] [Related]
40. Single ions trapped in a one-dimensional optical lattice. Enderlein M; Huber T; Schneider C; Schaetz T Phys Rev Lett; 2012 Dec; 109(23):233004. PubMed ID: 23368193 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]