These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19550510)

  • 1. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides.
    Hill MT; Marell M; Leong ES; Smalbrugge B; Zhu Y; Sun M; van Veldhoven PJ; Geluk EJ; Karouta F; Oei YS; Nötzel R; Ning CZ; Smit MK
    Opt Express; 2009 Jun; 17(13):11107-12. PubMed ID: 19550510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmonic lasing via the amplification of coupled surface plasmon waves inside dielectric-metal-dielectric waveguides.
    Kumar A; Yu SF; Li XF; Lau SP
    Opt Express; 2008 Sep; 16(20):16113-23. PubMed ID: 18825250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory for bowtie plasmonic nanolasers.
    Chang SW; Ni CY; Chuang SL
    Opt Express; 2008 Jul; 16(14):10580-95. PubMed ID: 18607473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide.
    Lee DJ; Yim HD; Lee SG; O BH
    Opt Express; 2011 Oct; 19(21):19895-900. PubMed ID: 21996997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spoof plasmon analogue of metal-insulator-metal waveguides.
    Kats MA; Woolf D; Blanchard R; Yu N; Capasso F
    Opt Express; 2011 Aug; 19(16):14860-70. PubMed ID: 21934847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adiabatic Nanofocusing in Hybrid Gap Plasmon Waveguides on the Silicon-on-Insulator Platform.
    Nielsen MP; Lafone L; Rakovich A; Sidiropoulos TP; Rahmani M; Maier SA; Oulton RF
    Nano Lett; 2016 Feb; 16(2):1410-4. PubMed ID: 26771836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration.
    Bian Y; Zheng Z; Zhao X; Zhu J; Zhou T
    Opt Express; 2009 Nov; 17(23):21320-5. PubMed ID: 19997371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of metal-dielectric grating lasers only supporting surface-wave-like modes.
    Chiang PJ; Chang SW
    Opt Express; 2014 Nov; 22(23):27845-58. PubMed ID: 25402027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries.
    Dionne JA; Verhagen E; Polman A; Atwater HA
    Opt Express; 2008 Nov; 16(23):19001-17. PubMed ID: 19581993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors.
    Hosseini A; Nejati H; Massoud Y
    Opt Express; 2008 Feb; 16(3):1475-80. PubMed ID: 18542222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.
    Chen X; Bhola B; Huang Y; Ho ST
    Opt Express; 2010 Aug; 18(16):17220-38. PubMed ID: 20721111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae.
    Lloyd-Hughes J; Scalari G; van Kolck A; Fischer M; Beck M; Faist J
    Opt Express; 2009 Sep; 17(20):18387-93. PubMed ID: 19907630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides.
    Chen J; Smolyakov GA; Brueck SR; Malloy KJ
    Opt Express; 2008 Sep; 16(19):14902-9. PubMed ID: 18795027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of metal-multi-insulator-metal plasmonic waveguides.
    Kong XT; Yan WG; Li ZB; Tian JG
    Opt Express; 2012 May; 20(11):12133-46. PubMed ID: 22714200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic modes in W-shaped metal-coated silicon grooves.
    Arbel D; Orenstein M
    Opt Express; 2008 Mar; 16(5):3114-9. PubMed ID: 18542397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The case for using gap plasmon-polaritons in second-order optical nonlinear processes.
    Khurgin JB; Sun G
    Opt Express; 2012 Dec; 20(27):28717-23. PubMed ID: 23263109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating.
    Park J; Kim H; Lee B
    Opt Express; 2008 Jan; 16(1):413-25. PubMed ID: 18521173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology.
    Kwon MS
    Opt Express; 2011 Apr; 19(9):8379-93. PubMed ID: 21643089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility study of nanoscaled optical waveguide based on near-resonant surface plasmon polariton.
    Yan M; Thylén L; Qiu M; Parekh D
    Opt Express; 2008 May; 16(10):7499-507. PubMed ID: 18545455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimode interference demultiplexers and splitters in metal-insulator-metal waveguides.
    Kou Y; Chen X
    Opt Express; 2011 Mar; 19(7):6042-7. PubMed ID: 21451628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.