These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 19550541)
1. Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer. Shopova SI; Cupps JM; Zhang P; Henderson EP; Lacey S; Fan X Opt Express; 2007 Oct; 15(20):12735-42. PubMed ID: 19550541 [TBL] [Abstract][Full Text] [Related]
2. Versatile opto-fluidic ring resonator lasers with ultra-low threshold. Lacey S; White IM; Sun Y; Shopova SI; Cupps JM; Zhang P; Fan X Opt Express; 2007 Nov; 15(23):15523-30. PubMed ID: 19550838 [TBL] [Abstract][Full Text] [Related]
3. Ultraviolet single-frequency coupled optofluidic ring resonator dye laser. Tu X; Wu X; Li M; Liu L; Xu L Opt Express; 2012 Aug; 20(18):19996-20001. PubMed ID: 23037052 [TBL] [Abstract][Full Text] [Related]
4. Optofluidic FRET lasers using aqueous quantum dots as donors. Chen Q; Kiraz A; Fan X Lab Chip; 2016 Jan; 16(2):353-9. PubMed ID: 26659274 [TBL] [Abstract][Full Text] [Related]
5. Microcavity-Enhanced Fluorescence Energy Transfer from Quantum Dot Excited Whispering Gallery Modes to Acceptor Dye Nanoparticles. Jana S; Xu X; Klymchenko A; Reisch A; Pons T ACS Nano; 2021 Jan; 15(1):1445-1453. PubMed ID: 33378154 [TBL] [Abstract][Full Text] [Related]
6. Versatile optofluidic ring resonator lasers based on microdroplets. Lee W; Luo Y; Zhu Q; Fan X Opt Express; 2011 Sep; 19(20):19668-74. PubMed ID: 21996908 [TBL] [Abstract][Full Text] [Related]
7. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
8. Demonstration of polarization mode selection and coupling efficiency of optofluidic ring resonator lasers. Zhang Y; Meng W; Yang H; Chu Y; Pu X Opt Lett; 2015 Nov; 40(21):5101-4. PubMed ID: 26512529 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of Broadband Lasing Cascade from a Single Dot-in-well InGaAs Microdisk. Talalaev V; Kryzhanovskaya N; Tomm JW; Rutckaia V; Schilling J; Zhukov A Sci Rep; 2019 Apr; 9(1):5635. PubMed ID: 30948736 [TBL] [Abstract][Full Text] [Related]
10. Bioinspired optofluidic FRET lasers via DNA scaffolds. Sun Y; Shopova SI; Wu CS; Arnold S; Fan X Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16039-42. PubMed ID: 20798062 [TBL] [Abstract][Full Text] [Related]
11. Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers. Siegle T; Kellerer J; Bonenberger M; Krämmer S; Klusmann C; Müller M; Kalt H Opt Express; 2018 Feb; 26(3):3579-3593. PubMed ID: 29401886 [TBL] [Abstract][Full Text] [Related]
12. Stable and enhanced frequency up-converted lasing from CsPbBr Liu Z; Hu Z; Shi T; Du J; Yang J; Zhang Z; Tang X; Leng Y Opt Express; 2019 Apr; 27(7):9459-9466. PubMed ID: 31045097 [TBL] [Abstract][Full Text] [Related]
13. PDMS embedded opto-fluidic microring resonator lasers. Suter JD; Sun Y; Howard DJ; Viator JA; Fan X Opt Express; 2008 Jul; 16(14):10248-53. PubMed ID: 18607433 [TBL] [Abstract][Full Text] [Related]
19. High sensitivity pH sensing by using a ring resonator laser integrated into a microfluidic chip. Li DY; Zhang H; Li Z; Zhou LW; Zhang MD; Pu XY; Sun YZ; Liu H; Zhang YX Opt Express; 2022 Jan; 30(3):4106-4116. PubMed ID: 35209655 [TBL] [Abstract][Full Text] [Related]
20. Super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on an Au substrate for plasmon lasers. Dong HM; Yang YH; Yang GW Sci Rep; 2015 Mar; 5():8776. PubMed ID: 25739662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]