These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19550587)

  • 1. Electromagnetic scattering by a fixed finite object embedded in an absorbing medium.
    Mishchenko MI
    Opt Express; 2007 Oct; 15(20):13188-202. PubMed ID: 19550587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple scattering by particles embedded in an absorbing medium. 1. Foldy-Lax equations, order-of-scattering expansion, and coherent field.
    Mishchenko MI
    Opt Express; 2008 Feb; 16(3):2288-301. PubMed ID: 18542308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic scattering and emission by a fixed multi-particle object in local thermal equilibrium: General formalism.
    Mishchenko MI
    J Quant Spectrosc Radiat Transf; 2017 Oct; 200():137-145. PubMed ID: 29643568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
    Mishchenko MI; Dlugach JM; Yurkin MA; Bi L; Cairns B; Liu L; Panetta RL; Travis LD; Yang P; Zakharova NT
    Phys Rep; 2016 May; 632():1-75. PubMed ID: 29657355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impressed sources and fields in the volume-integral-equation formulation of electromagnetic scattering by a finite object: a tutorial.
    Mishchenko MI; Yurkin MA
    J Quant Spectrosc Radiat Transf; 2018 Jul; 214():158-167. PubMed ID: 30082926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete dipole approximation method for electromagnetic scattering by particles in an absorbing host medium.
    Dong J; Zhang W; Liu L
    Opt Express; 2021 Mar; 29(5):7690-7705. PubMed ID: 33726265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extinction by a homogeneous spherical particle in an absorbing medium.
    Mishchenko MI; Videen G; Yang P
    Opt Lett; 2017 Dec; 42(23):4873-4876. PubMed ID: 29216132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mie theory for light scattering by a spherical particle in an absorbing medium.
    Fu Q; Sun W
    Appl Opt; 2001 Mar; 40(9):1354-61. PubMed ID: 18357121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium.
    Sun W; Loeb NG; Fu Q
    Appl Opt; 2002 Sep; 41(27):5728-43. PubMed ID: 12269573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic scattering from cylindrical objects above a conductive surface using a hybrid finite-element-surface integral equation method.
    Alavikia B; Ramahi OM
    J Opt Soc Am A Opt Image Sci Vis; 2011 Dec; 28(12):2510-8. PubMed ID: 22193264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering by an infinite circular cylinder immersed in an absorbing medium.
    Sun W; Loeb NG; Lin B
    Appl Opt; 2005 Apr; 44(12):2338-42. PubMed ID: 15861840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scattering of a damped inhomogeneous plane wave by a particle in a weakly absorbing medium.
    Mishchenko MI; Yurkin MA; Cairns B
    OSA Contin; 2019 Aug; 2(8):2362-2368. PubMed ID: 33103067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light scattering by a random distribution of particles embedded in absorbing media: diagrammatic expansion of the extinction coefficient.
    Durant S; Calvo-Perez O; Vukadinovic N; Greffet JJ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2943-52. PubMed ID: 17767266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of methods for deriving the radiative transfer theory from the Maxwell equations. II: Approach based on the Dyson and Bethe-Salpeter equations.
    Doicu A; Mishchenko MI
    J Quant Spectrosc Radiat Transf; 2019 Feb; 224():25-36. PubMed ID: 30713354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattering by a dense finite layer of infinite cylinders at oblique incidence.
    Lee SC
    J Opt Soc Am A Opt Image Sci Vis; 2008 Oct; 25(10):2489-98. PubMed ID: 18830327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity studies for imaging a spherical object embedded in a spherically symmetric, two-layer turbid medium with photon-density waves.
    Yao Y; Barbour RL; Wang Y; Graber HL; Chang J
    Appl Opt; 1996 Feb; 35(4):735-51. PubMed ID: 21069064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized Kubelka-Munk approximation for multiple scattering of polarized light.
    Sandoval C; Kim AD
    J Opt Soc Am A Opt Image Sci Vis; 2017 Feb; 34(2):153-160. PubMed ID: 28157841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving analytically the simplified spherical harmonics equations in cylindrical turbid media.
    Edjlali E; Bérubé-Lauzière Y
    J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1633-1644. PubMed ID: 30182999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inherent and apparent scattering properties of coated or uncoated spheres embedded in an absorbing host medium.
    Yang P; Gao BC; Wiscombe WJ; Mishchenko MI; Platnick SE; Huang HL; Baum BA; Hu YX; Winker DM; Tsay SC; Park SK
    Appl Opt; 2002 May; 41(15):2740-59. PubMed ID: 12027161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D spatial spectral integral equation method for electromagnetic scattering from finite objects in a layered medium.
    Dilz RJ; van Kraaij MGMM; van Beurden MC
    Opt Quantum Electron; 2018; 50(5):206. PubMed ID: 31007357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.