These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19550592)

  • 1. Investigation of optical properties of circular spiral photonic crystals.
    Grossman N; Ovsianikov A; Petrov A; Eich M; Chichkov B
    Opt Express; 2007 Oct; 15(20):13236-43. PubMed ID: 19550592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Control of the Optical Bandgap in One-Dimensional Photonic Crystals.
    Stinson VP; Shuchi N; McLamb M; Boreman GD; Hofmann T
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer.
    Zhou G; Ventura M; Gu M; Matthews A; Kivshar Y
    Opt Express; 2005 Jun; 13(12):4390-5. PubMed ID: 19495354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures.
    Chen L; Taverne MP; Zheng X; Lin JD; Oulton R; Lopez-Garcia M; Ho YL; Rarity JG
    Opt Express; 2015 Oct; 23(20):26565-75. PubMed ID: 26480169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties.
    Serbin J; Ovsianikov A; Chichkov B
    Opt Express; 2004 Oct; 12(21):5221-8. PubMed ID: 19484080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic band gaps.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016610. PubMed ID: 12241503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Square spiral 3D photonic bandgap crystals at telecommunications frequencies.
    Jensen M; Brett M
    Opt Express; 2005 May; 13(9):3348-54. PubMed ID: 19495237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates.
    Chanda D; Abolghasemi L; Herman PR
    Opt Express; 2006 Sep; 14(19):8568-77. PubMed ID: 19529236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal diamond.
    He M; Gales JP; Ducrot É; Gong Z; Yi GR; Sacanna S; Pine DJ
    Nature; 2020 Sep; 585(7826):524-529. PubMed ID: 32968261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths.
    Noda S; Tomoda K; Yamamoto N; Chutinan A
    Science; 2000 Jul; 289(5479):604-6. PubMed ID: 10915619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of thin-film photonic crystals with complete photonic bandgap.
    Park SY; Kim H; Song BS
    Opt Express; 2018 Oct; 26(22):29521-29526. PubMed ID: 30470114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of background dielectric on TE-polarized photonic bandgap of metallodielectric photonic crystals using Dirichlet-to-Neumann map method.
    Sedghi A; Rezaei B
    Appl Opt; 2016 Nov; 55(33):9417-9421. PubMed ID: 27869843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diamond photonic crystal mirror with a partial bandgap by two 2D photonic crystal layers.
    Jeon SW; Kwon K; Han SW; Kim YS; Cho YW; Lim HT; Moon S; Shin H; Jung H
    Opt Express; 2020 Dec; 28(26):39048-39057. PubMed ID: 33379462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical properties of inverted opal photonic band gap crystals with stacking disorder.
    Wang ZL; Chan CT; Zhang WY; Chen Z; Ming NB; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016612. PubMed ID: 12636630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Holographic Fabrication of 3D Photonic Crystal Templates with Polarization Control through a 3D Printed Reflective Optical Element.
    Lowell D; George D; Lutkenhaus J; Tian C; Adewole M; Philipose U; Zhang H; Lin Y
    Micromachines (Basel); 2016 Jul; 7(7):. PubMed ID: 30404300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design principles for photonic crystals based on plasmonic nanoparticle superlattices.
    Sun L; Lin H; Kohlstedt KL; Schatz GC; Mirkin CA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7242-7247. PubMed ID: 29941604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.