These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19550709)

  • 1. Optofluidic trapping and transport on solid core waveguides within a microfluidic device.
    Schmidt BS; Yang AH; Erickson D; Lipson M
    Opt Express; 2007 Oct; 15(22):14322-34. PubMed ID: 19550709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip.
    Kim J; Shin JH
    Sci Rep; 2016 Sep; 6():33842. PubMed ID: 27653191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability analysis of optofluidic transport on solid-core waveguiding structures.
    Yang AH; Erickson D
    Nanotechnology; 2008 Jan; 19(4):045704. PubMed ID: 21817521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip.
    Cai H; Poon AW
    Lab Chip; 2012 Oct; 12(19):3803-9. PubMed ID: 22878866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources.
    Lim JM; Kim SH; Choi JH; Yang SM
    Lab Chip; 2008 Sep; 8(9):1580-5. PubMed ID: 18818816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic ring resonator switch for optical particle transport.
    Yang AH; Erickson D
    Lab Chip; 2010 Mar; 10(6):769-74. PubMed ID: 20221566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration.
    Loozen GB; Karuna A; Fanood MMR; Schreuder E; Caro J
    Beilstein J Nanotechnol; 2020; 11():829-842. PubMed ID: 32551208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible optofluidic waveguide platform with multi-dimensional reconfigurability.
    Parks JW; Schmidt H
    Sci Rep; 2016 Sep; 6():33008. PubMed ID: 27597164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic Waveguides in Teflon AF-Coated PDMS Microfluidic Channels.
    Cho SH; Godin J; Lo YH
    IEEE Photonics Technol Lett; 2009 Aug; 21(15):1057-1059. PubMed ID: 20729984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forces and transport velocities for a particle in a slot waveguide.
    Yang AH; Lerdsuchatawanich T; Erickson D
    Nano Lett; 2009 Mar; 9(3):1182-8. PubMed ID: 19178156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic manipulation of particles via transformative optofluidic waveguides.
    Lee KS; Lee KH; Kim SB; Ha BH; Jung JH; Sung HJ; Kim SS
    Sci Rep; 2015 Oct; 5():15170. PubMed ID: 26471003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices.
    Hsu LC; Chen TC; Yang YT; Huang CY; Shen DW; Chen YT; Lee MC
    Lab Chip; 2013 Mar; 13(6):1151-5. PubMed ID: 23364290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of electrostatic forces on particle propulsion in the evanescent field of silver ion-exchanged waveguides.
    Gebennikov D; Mittler S
    Langmuir; 2013 Feb; 29(8):2615-22. PubMed ID: 23336214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic Particle Manipulation Platform with Nanomembrane.
    Walker ZJ; Wells T; Belliston E; Romney S; Walker SB; Sampad MJN; Saiduzzaman SM; Losakul R; Schmidt H; Hawkins AR
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic Particle Manipulation: Optical Trapping in a Thin-Membrane Microchannel.
    Walker ZJ; Wells T; Belliston E; Walker SB; Zeller C; Sampad MJN; Saiduzzaman SM; Schmidt H; Hawkins AR
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid silicon-PDMS optofluidic platform for sensing applications.
    Testa G; Persichetti G; Sarro PM; Bernini R
    Biomed Opt Express; 2014 Feb; 5(2):417-26. PubMed ID: 24575337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscale Diffractive Lenses Integrated into Microfluidic Devices for Size-Selective Optical Trapping of Particles.
    Pope BL; Zhang M; Jo S; Dragnea B; Jacobson SC
    Anal Chem; 2024 Jul; ():. PubMed ID: 38976499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.