These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19550817)

  • 1. Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence.
    Moretti L; Mocella V
    Opt Express; 2007 Nov; 15(23):15314-23. PubMed ID: 19550817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures.
    Boriskina SV; Gopinath A; Dal Negro L
    Opt Express; 2008 Nov; 16(23):18813-26. PubMed ID: 19581970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon.
    Moretti L; Rea I; Rotiroti L; Rendina I; Abbate G; Marino A; De Stefano L
    Opt Express; 2006 Jun; 14(13):6264-72. PubMed ID: 19516799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic-plasmonic scattering resonances in deterministic aperiodic structures.
    Gopinath A; Boriskina SV; Feng NN; Reinhard BM; Dal Negro L
    Nano Lett; 2008 Aug; 8(8):2423-31. PubMed ID: 18646833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge modes of scattering chains with aperiodic order.
    Wang R; Röntgen M; Morfonios CV; Pinheiro FA; Schmelcher P; Dal Negro L
    Opt Lett; 2018 May; 43(9):1986-1989. PubMed ID: 29714727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.
    Singh BK; Pandey PC
    Appl Opt; 2016 Jul; 55(21):5684-92. PubMed ID: 27463924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exotic electronic properties in Thue-Morse graphene superlattices.
    Xu Y; Zou J; Jin G
    J Phys Condens Matter; 2013 Jun; 25(24):245301. PubMed ID: 23709474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-reciprocal spatial and quasi-reciprocal angular Goos-Hänchen shifts around double CPA-LPs in PT-symmetric Thue-Morse photonic crystals.
    Ni H; Zhou G; Chen X; Zhao D; Wang Y
    Opt Express; 2023 Jan; 31(2):1234-1248. PubMed ID: 36785163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks.
    Wu J; Yang X
    Opt Express; 2017 Oct; 25(22):27724-27735. PubMed ID: 29092243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the nonreciprocal properties of one-dimensional cylindrical magnetized plasma photonic crystals.
    Wang Q; Wang P; Wan B; Zhang H
    J Opt Soc Am A Opt Image Sci Vis; 2021 Jun; 38(6):897-907. PubMed ID: 34143159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional photonic quasicrystals by single beam computer-generated holography.
    Zito G; Piccirillo B; Santamato E; Marino A; Tkachenko V; Abbate G
    Opt Express; 2008 Apr; 16(8):5164-70. PubMed ID: 18542617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting aperiodic designs in nanophotonic devices.
    Maciá E
    Rep Prog Phys; 2012 Mar; 75(3):036502. PubMed ID: 22790421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation of Bloch-like surface waves in quasi-crystals and aperiodic dielectric multilayers.
    Koju V; Robertson WM
    Opt Lett; 2016 Jul; 41(13):2915-8. PubMed ID: 27367064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces.
    Boriskina SV; Lee SY; Amsden JJ; Omenetto FG; Dal Negro L
    Opt Express; 2010 Jul; 18(14):14568-76. PubMed ID: 20639942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings.
    David S; Chelnokov A; Lourtioz JM
    Opt Lett; 2000 Jul; 25(14):1001-3. PubMed ID: 18064253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete photonic bandgap in a low-index two-dimensional quasicrystalline structure.
    Chistyakov VA; Yafyasov RR; Sayanskiy AD; Sidorenko MS; Rybin MV
    Opt Lett; 2024 Jul; 49(13):3664-3667. PubMed ID: 38950235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of a square-lattice photonic crystal within the partial bandgap.
    Tang Z; Peng R; Ye Y; Zhao C; Fan D; Zhang H; Wen S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):379-84. PubMed ID: 17206253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of optical properties of circular spiral photonic crystals.
    Grossman N; Ovsianikov A; Petrov A; Eich M; Chichkov B
    Opt Express; 2007 Oct; 15(20):13236-43. PubMed ID: 19550592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.