These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19550872)

  • 1. Electrically tunable fast light at THz bandwidth using cascaded semiconductor optical amplifiers.
    Pesala B; Sedgwick F; Uskov AV; Chang-Hasnain C
    Opt Express; 2007 Nov; 15(24):15863-7. PubMed ID: 19550872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greatly enhanced slow and fast light in chirped pulse semiconductor optical amplifiers: theory and experiments.
    Pesala B; Sedgwick F; Uskov AV; Chang-Hasnain C
    Opt Express; 2009 Feb; 17(4):2188-97. PubMed ID: 19219122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. THz-bandwidth tunable slow light in semiconductor optical amplifiers.
    Sedgwick FG; Pesala B; Lin JY; Ko WS; Zhao X; Chang-Hasnain CJ
    Opt Express; 2007 Jan; 15(2):747-53. PubMed ID: 19532297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.
    Chen K; Hou J; Huang Z; Cao T; Zhang J; Yu Y; Zhang X
    Opt Express; 2015 Feb; 23(3):3784-94. PubMed ID: 25836230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chirp-enhanced fast light in semiconductor optical amplifiers.
    Sedgwick FG; Pesala B; Uskov AV; Chang-Hasnain CJ
    Opt Express; 2007 Dec; 15(26):17631-8. PubMed ID: 19551058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers.
    Pesala B; Chen Z; Uskov AV; Chang-Hasnain C
    Opt Express; 2006 Dec; 14(26):12968-75. PubMed ID: 19532190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel monolithic integration scheme for high-speed electroabsorption modulators and semiconductor optical amplifiers using cascaded structure.
    Lin FZ; Wu TH; Chiu YJ
    Opt Express; 2009 Jun; 17(12):10378-84. PubMed ID: 19506692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed pulse train amplification in semiconductor optical amplifiers with optimized bias current.
    Xia M; Ghafouri-Shiraz H; Hou L; Kelly AE
    Appl Opt; 2017 Feb; 56(4):1079-1086. PubMed ID: 28158115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization-insensitive phase conjugation using single pump Bragg-scattering four-wave mixing in semiconductor optical amplifiers.
    Sobhanan A; Venkitesh D
    Opt Express; 2018 Sep; 26(18):22761-22772. PubMed ID: 30184931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering.
    Li F; Helmy AS
    Opt Lett; 2013 Nov; 38(22):4542-5. PubMed ID: 24322069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two cascaded SOAs used as intensity modulators for adaptively modulated optical OFDM signals in optical access networks.
    Hamié A; Hamzé M; Taki H; Makouk L; Sharaiha A; Alaeddine A; Al Housseini A; Giacoumidis E; Tang JM
    Opt Express; 2014 Jun; 22(13):15763-77. PubMed ID: 24977835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-optical power equalization based on a two-section reflective semiconductor optical amplifier.
    Huang L; Hong W; Jiang G
    Opt Express; 2013 Feb; 21(4):4598-611. PubMed ID: 23481993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-stabilizing optical clock pulse-train generator using SOA and saturable absorber for asynchronous optical packet processing.
    Nakahara T; Takahashi R
    Opt Express; 2013 May; 21(9):10712-9. PubMed ID: 23669927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers.
    Su H; Kondratko P; Chuang SL
    Opt Express; 2006 May; 14(11):4800-7. PubMed ID: 19516637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widely bandwidth-tunable silicon filter with an unlimited free-spectral range.
    St-Yves J; Bahrami H; Jean P; LaRochelle S; Shi W
    Opt Lett; 2015 Dec; 40(23):5471-4. PubMed ID: 26625028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband and high power terahertz pulse generation beyond excitation bandwidth limitation via chi2 cascaded processes in LiNbO3.
    Nagai M; Jewariya M; Ichikawa Y; Ohtake H; Sugiura T; Uehara Y; Tanaka K
    Opt Express; 2009 Jul; 17(14):11543-9. PubMed ID: 19582070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches.
    Nielsen ML; Mørk J; Suzuki R; Sakaguchi J; Ueno Y
    Opt Express; 2006 Jan; 14(1):331-47. PubMed ID: 19503347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation study on cascaded terahertz pulse generation in electro-optic crystals.
    Hattori T; Takeuchi K
    Opt Express; 2007 Jun; 15(13):8076-93. PubMed ID: 19547135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic generation of ultra-wideband doublet pulse using a semiconductor-optical-amplifier based polarization-diversified loop.
    Luo B; Dong J; Yu Y; Yang T; Zhang X
    Opt Lett; 2012 Jun; 37(12):2217-9. PubMed ID: 22739860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation, tuning, and shaping of narrow-band, picosecond THz pulses by two-beam excitation.
    Stepanov A; Hebling J; Kuhl J
    Opt Express; 2004 Sep; 12(19):4650-8. PubMed ID: 19484017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.