These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 19550890)

  • 1. Calculation of spherical red blood cell deformation in a dual-beam optical stretcher.
    Bareil PB; Sheng Y; Chen YQ; Chiou A
    Opt Express; 2007 Nov; 15(24):16029-34. PubMed ID: 19550890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps.
    Liao GB; Chen YQ; Bareil PB; Sheng Y; Chiou A; Chang MS
    J Biophotonics; 2014 Oct; 7(10):782-7. PubMed ID: 23740841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral migration of an elastic capsule by optical force in a uniform flow.
    Chang CB; Huang WX; Sung HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066306. PubMed ID: 23368037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation of phospholipid vesicles in an optical stretcher.
    Delabre U; Feld K; Crespo E; Whyte G; Sykes C; Seifert U; Guck J
    Soft Matter; 2015 Aug; 11(30):6075-88. PubMed ID: 26135540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher.
    Ekpenyong AE; Posey CL; Chaput JL; Burkart AK; Marquardt MM; Smith TJ; Nichols MG
    Appl Opt; 2009 Nov; 48(32):6344-54. PubMed ID: 19904335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    KamgouƩ A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher.
    Lee S; Joo B; Jeon PJ; Im S; Oh K
    Biomed Opt Express; 2015 Nov; 6(11):4417-32. PubMed ID: 26601005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput linear optical stretcher for mechanical characterization of blood cells.
    Roth KB; Neeves KB; Squier J; Marr DW
    Cytometry A; 2016 Apr; 89(4):391-7. PubMed ID: 26565892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local scattering stress distribution on surface of a spherical cell in optical stretcher.
    B Bareil P; Sheng Y; Chiou A
    Opt Express; 2006 Dec; 14(25):12503-9. PubMed ID: 19529685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutral axis location in bending and Young's modulus of different layers of arterial wall.
    Yu Q; Zhou J; Fung YC
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H52-60. PubMed ID: 8342664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study.
    Sleep J; Wilson D; Simmons R; Gratzer W
    Biophys J; 1999 Dec; 77(6):3085-95. PubMed ID: 10585930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pendant capsule elastometry.
    Hegemann J; Knoche S; Egger S; Kott M; Demand S; Unverfehrt A; Rehage H; Kierfeld J
    J Colloid Interface Sci; 2018 Mar; 513():549-565. PubMed ID: 29179095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An entropy spring model for the Young's modulus change of biodegradable polymers during biodegradation.
    Wang Y; Han X; Pan J; Sinka C
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):14-21. PubMed ID: 19878898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Model of an elastic bilayer membrane].
    Pasechnik VI
    Biofizika; 1980; 25(2):265-9. PubMed ID: 7370337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of the effective Young's modulus values of fullerene molecules: a combined molecular dynamics simulation and continuum shell model.
    Ghavanloo E; Izadi R; Nayebi A
    J Mol Model; 2018 Feb; 24(3):71. PubMed ID: 29492678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers.
    Mills JP; Qie L; Dao M; Lim CT; Suresh S
    Mech Chem Biosyst; 2004 Sep; 1(3):169-80. PubMed ID: 16783930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elasticity of polyelectrolyte multilayer microcapsules.
    Lulevich VV; Andrienko D; Vinogradova OI
    J Chem Phys; 2004 Feb; 120(8):3822-6. PubMed ID: 15268547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.
    Zhao X; Niinomi M; Nakai M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.
    Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM
    Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.