These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 19551099)

  • 1. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthonormal vector polynomials in a unit circle, Part II : Completing the basis set.
    Zhao C; Burge JH
    Opt Express; 2008 Apr; 16(9):6586-91. PubMed ID: 18545361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TPJ
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthonormal polynomials in wavefront analysis: error analysis.
    Dai GM; Mahajan VN
    Appl Opt; 2008 Jul; 47(19):3433-45. PubMed ID: 18594590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zernike radial slope polynomials for wavefront reconstruction and refraction.
    Nam J; Thibos LN; Iskander DR
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):1035-48. PubMed ID: 19340280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthonormal polynomials in wavefront analysis: analytical solution.
    Mahajan VN; Dai GM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithm and experiment of whole-aperture wavefront reconstruction from annular subaperture Hartmann-Shack gradient data.
    Xu H; Xian H; Zhang Y
    Opt Express; 2010 Jun; 18(13):13431-43. PubMed ID: 20588474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zernike vs. Bessel circular functions in visual optics.
    Trevino JP; Gómez-Correa JE; Iskander DR; Chávez-Cerda S
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):394-402. PubMed ID: 23668897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of numerical orthogonal transformation for the Zernike analysis of lateral shearing interferograms.
    Dai F; Tang F; Wang X; Feng P; Sasaki O
    Opt Express; 2012 Jan; 20(2):1530-44. PubMed ID: 22274496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zernike-like Laguerre-Gaussian orthonormal polynomials for optical field reconstruction.
    Strycker BD
    Opt Lett; 2022 Dec; 47(23):6137-6140. PubMed ID: 37219191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalization of Zernike polynomials for regular portions of circles and ellipses.
    Navarro R; López JL; Díaz JA; Sinusía EP
    Opt Express; 2014 Sep; 22(18):21263-79. PubMed ID: 25321506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials.
    Rahbar K; Faez K; Attaran Kakhki E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vector polynomials for direct analysis of circular wavefront slope data.
    Mahajan VN; Acosta E
    J Opt Soc Am A Opt Image Sci Vis; 2017 Oct; 34(10):1908-1913. PubMed ID: 29036062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling pseudo-Zernike expansion coefficients to different pupil sizes.
    Schwiegerling J
    Opt Lett; 2011 Aug; 36(16):3076-8. PubMed ID: 21847165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.
    Mahajan VN; Aftab M
    Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils.
    Lee H
    Opt Lett; 2010 Jul; 35(13):2173-5. PubMed ID: 20596184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.
    Mahajan VN
    Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavefront aberrations of x-ray dynamical diffraction beams.
    Liao K; Hong Y; Sheng W
    Appl Opt; 2014 Oct; 53(28):6362-70. PubMed ID: 25322219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials.
    Hou X; Wu F; Yang L; Chen Q
    Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.