BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 19551188)

  • 21. Theoretical study of modes of adsorption of water dimer on H-ZSM-5 and H-Faujasite zeolites.
    Jungsuttiwong S; Limtrakul J; Truong TN
    J Phys Chem B; 2005 Jul; 109(27):13342-51. PubMed ID: 16852665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reaction intermediates in acid catalysis by zeolites: prediction of the relative tendency to form alkoxides or carbocations as a function of hydrocarbon nature and active site structure.
    Boronat M; Viruela PM; Corma A
    J Am Chem Soc; 2004 Mar; 126(10):3300-9. PubMed ID: 15012161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons.
    Hoff TC; Gardner DW; Thilakaratne R; Wang K; Hansen TW; Brown RC; Tessonnier JP
    ChemSusChem; 2016 Jun; 9(12):1473-82. PubMed ID: 27167613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the role of Ti(IV) as a Lewis acid in the chemistry of titanium zeolites: Formation, structure, reactivity, and aging of Ti-peroxo oxidizing intermediates. A first principles study.
    Spanó E; Tabacchi G; Gamba A; Fois E
    J Phys Chem B; 2006 Nov; 110(43):21651-61. PubMed ID: 17064121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure.
    Bare SR; Kelly SD; Sinkler W; Low JJ; Modica FS; Valencia S; Corma A; Nemeth LT
    J Am Chem Soc; 2005 Sep; 127(37):12924-32. PubMed ID: 16159286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy.
    Blasco T
    Chem Soc Rev; 2010 Dec; 39(12):4685-702. PubMed ID: 20976339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).
    Kröcher O; Brandenberger S
    Chimia (Aarau); 2012; 66(9):687-93. PubMed ID: 23211727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst.
    Xie W; Huang X; Li H
    Bioresour Technol; 2007 Mar; 98(4):936-9. PubMed ID: 16740389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study.
    Van Speybroeck V; De Wispelaere K; Van der Mynsbrugge J; Vandichel M; Hemelsoet K; Waroquier M
    Chem Soc Rev; 2014 Nov; 43(21):7326-57. PubMed ID: 25054453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Confinement in a Zeolite and Zeolite Catalysis.
    Chai Y; Dai W; Wu G; Guan N; Li L
    Acc Chem Res; 2021 Jul; 54(13):2894-2904. PubMed ID: 34165959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of a solid Brønsted acid site in a chiral framework.
    Ingleson MJ; Barrio JP; Bacsa J; Dickinson C; Park H; Rosseinsky MJ
    Chem Commun (Camb); 2008 Mar; (11):1287-9. PubMed ID: 18389109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental and theoretical methods in kinetic studies of heterogeneously catalyzed reactions.
    Reyniers MF; Marin GB
    Annu Rev Chem Biomol Eng; 2014; 5():563-94. PubMed ID: 24910922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical insights into the mechanism of olefin elimination in the methanol-to-olefin process over HZSM-5, HMOR, HBEA, and HMCM-22 zeolites.
    Wang S; Chen Y; Wei Z; Qin Z; Chen J; Ma H; Dong M; Li J; Fan W; Wang J
    J Phys Chem A; 2014 Oct; 118(39):8901-10. PubMed ID: 24559413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design.
    Pérez-Ramírez J; Christensen CH; Egeblad K; Christensen CH; Groen JC
    Chem Soc Rev; 2008 Nov; 37(11):2530-42. PubMed ID: 18949124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active-site coating for molecular discrimination in heterogeneous catalysis.
    Collier P; Golunski S; Malde C; Breen J; Burch R
    J Am Chem Soc; 2003 Oct; 125(41):12414-5. PubMed ID: 14531677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DFT investigations for the reaction mechanism of dimethyl carbonate synthesis on Pd(II)/β zeolites.
    Shen Y; Meng Q; Huang S; Gong J; Ma X
    Phys Chem Chem Phys; 2013 Aug; 15(31):13116-27. PubMed ID: 23824280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diphenylmethane-mediated transmethylation of methylbenzenes over H-zeolites.
    Svelle S; Olsbye U; Lillerud KP; Kolboe S; Bjørgen M
    J Am Chem Soc; 2006 May; 128(17):5618-9. PubMed ID: 16637612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites.
    Gounder R; Iglesia E
    J Am Chem Soc; 2009 Feb; 131(5):1958-71. PubMed ID: 19146372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst.
    Corma A; Díaz-Cabañas MJ; Martínez-Triguero J; Rey F; Rius J
    Nature; 2002 Aug; 418(6897):514-7. PubMed ID: 12152074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zeolite catalyzed selective deprotection of di- and tri-O-isopropylidene sugar acetals.
    Bhaskar PM; Mathiselvam M; Loganathan D
    Carbohydr Res; 2008 Jul; 343(10-11):1801-7. PubMed ID: 18502410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.