BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19551197)

  • 1. UV resonance Raman spectroscopy of TTR(105-115): determination of the pKa of tyrosine.
    Pieridou GK; Hayes SC
    Phys Chem Chem Phys; 2009 Jul; 11(26):5302-9. PubMed ID: 19551197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved ultraviolet resonance Raman studies of protein structure: application to bacteriorhodopsin.
    Ames JB; Ros M; Raap J; Lugtenburg J; Mathies RA
    Biochemistry; 1992 Jun; 31(23):5328-34. PubMed ID: 1606157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV resonance Raman study of TTR(105-115) structural evolution as a function of temperature.
    Pieridou G; Avgousti-Menelaou C; Tamamis P; Archontis G; Hayes SC
    J Phys Chem B; 2011 Apr; 115(14):4088-98. PubMed ID: 21428385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitration of internal tyrosine of cytochrome c probed by resonance Raman scattering.
    Quaroni L; Smith WE
    Biospectroscopy; 1999; 5(5 Suppl):S71-6. PubMed ID: 10512540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraviolet resonance Raman and absorption difference spectroscopy of myoglobins: titration behavior of individual tyrosine residues.
    Asher SA; Larkin PJ; Teraoka J
    Biochemistry; 1991 Jun; 30(24):5944-54. PubMed ID: 2043634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heme structure of hemoglobin M Iwate [alpha 87(F8)His-->Tyr]: a UV and visible resonance Raman study.
    Nagai M; Aki M; Li R; Jin Y; Sakai H; Nagatomo S; Kitagawa T
    Biochemistry; 2000 Oct; 39(43):13093-105. PubMed ID: 11052661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV Raman evidence of a tyrosine in apo-human serum transferrin with a low pK(a) that is elevated upon binding of sulphate.
    Clarkson J; Smith DA
    FEBS Lett; 2001 Aug; 503(1):30-4. PubMed ID: 11513849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV Resonance Raman Spectroscopy as a Tool to Probe Membrane Protein Structure and Dynamics.
    Asamoto DK; Kim JE
    Methods Mol Biol; 2019; 2003():327-349. PubMed ID: 31218624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV resonance Raman and excited-state relaxation rate studies of hemoglobin.
    Cho N; Song S; Asher SA
    Biochemistry; 1994 May; 33(19):5932-41. PubMed ID: 8180222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine hydrogen-bonding and environmental effects in proteins probed by ultraviolet resonance Raman spectroscopy.
    Hildebrandt PG; Copeland RA; Spiro TG; Otlewski J; Laskowski M; Prendergast FG
    Biochemistry; 1988 Jul; 27(15):5426-33. PubMed ID: 3179264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in coordination states of substituted tyrosine residues and quaternary structures among hemoglobin M probed by resonance Raman spectroscopy.
    Aki Y; Nagai M; Nagai Y; Imai K; Aki M; Sato A; Kubo M; Nagatomo S; Kitagawa T
    J Biol Inorg Chem; 2010 Feb; 15(2):147-58. PubMed ID: 19701784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV resonance Raman studies on the activation mechanism of human hematopoietic prostaglandin D(2) synthase by a divalent cation, Mg(2+).
    Uchida Y; Urade Y; Mori S; Kohzuma T
    J Inorg Biochem; 2010 Mar; 104(3):331-40. PubMed ID: 20074808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quaternary structure sensitive tyrosine interactions in hemoglobin: a UV resonance Raman study of the double mutant rHb (beta99Asp-->Asn, alpha42Tyr-->Asp).
    Huang S; Peterson ES; Ho C; Friedman JM
    Biochemistry; 1997 May; 36(20):6197-206. PubMed ID: 9166792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quaternary structure sensitive tyrosine residues in human hemoglobin: UV resonance raman studies of mutants at alpha140, beta35, and beta145 tyrosine.
    Nagai M; Wajcman H; Lahary A; Nakatsukasa T; Nagatomo S; Kitagawa T
    Biochemistry; 1999 Jan; 38(4):1243-51. PubMed ID: 9930984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST.
    Atkins WM; Wang RW; Bird AW; Newton DJ; Lu AY
    J Biol Chem; 1993 Sep; 268(26):19188-91. PubMed ID: 8366071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the potential of fluorinated tyrosines as spectroscopic probes of local protein environments: a UV resonance Raman study.
    Reid PJ; Loftus C; Beeson CC;
    Biochemistry; 2003 Mar; 42(8):2441-8. PubMed ID: 12600211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet and laser Raman investigation of the buried tyrosines in fd phage.
    Dunker AK; Williams RW; Peticolas WL
    J Biol Chem; 1979 Jul; 254(14):6444-8. PubMed ID: 36395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV resonance Raman study of streptavidin binding of biotin and 2-iminobiotin: comparison with avidin.
    Clarkson J; Batchelder DN; Smith DA
    Biopolymers; 2001; 62(6):307-14. PubMed ID: 11857269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes during the photocycle of photoactive yellow protein monitored by ultraviolet resonance raman spectra of tyrosine and tryptophan.
    El-Mashtoly SF; Yamauchi S; Kumauchi M; Hamada N; Tokunaga F; Unno M
    J Phys Chem B; 2005 Dec; 109(49):23666-73. PubMed ID: 16375346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate polarization by residues in delta 5-3-ketosteroid isomerase probed by site-directed mutagenesis and UV resonance Raman spectroscopy.
    Austin JC; Kuliopulos A; Mildvan AS; Spiro TG
    Protein Sci; 1992 Feb; 1(2):259-70. PubMed ID: 1339027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.