These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 19551513)
21. An optically powered single-channel stimulation implant as test system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses. Schanze T; Hesse L; Lau C; Greve N; Haberer W; Kammer S; Doerge T; Rentzos A; Stieglitz T IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):983-92. PubMed ID: 17554818 [TBL] [Abstract][Full Text] [Related]
22. Sensors for use with functional neuromuscular stimulation. Crago PE; Chizeck HJ; Neuman MR; Hambrecht FT IEEE Trans Biomed Eng; 1986 Feb; 33(2):256-68. PubMed ID: 3485560 [No Abstract] [Full Text] [Related]
23. [Conception and development of flexible stimulator structures within a retinal implant system]. Stieglitz T; Blau C; Beutel H; Keller R; Meyer JU Biomed Tech (Berl); 1997; 42 Suppl():458-9. PubMed ID: 9517236 [No Abstract] [Full Text] [Related]
24. A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators. Ghovanloo M; Najafi K IEEE Trans Biomed Eng; 2005 Jan; 52(1):97-105. PubMed ID: 15651568 [TBL] [Abstract][Full Text] [Related]
25. Perceptual thresholds and electrode impedance in three retinal prosthesis subjects. Mahadevappa M; Weiland JD; Yanai D; Fine I; Greenberg RJ; Humayun MS IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):201-6. PubMed ID: 16003900 [TBL] [Abstract][Full Text] [Related]
26. Design and clinical application of a double helix electrode for functional electrical stimulation. Scheiner A; Polando G; Marsolais EB IEEE Trans Biomed Eng; 1994 May; 41(5):425-31. PubMed ID: 8070801 [TBL] [Abstract][Full Text] [Related]
27. Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters. Mailley S; Hyland M; Mailley P; McLaughlin JA; McAdams ET Bioelectrochemistry; 2004 Jun; 63(1-2):359-64. PubMed ID: 15110303 [TBL] [Abstract][Full Text] [Related]
28. A single-channel implantable microstimulator for functional neuromuscular stimulation. Ziaie B; Nardin MD; Coghlan AR; Najafi K IEEE Trans Biomed Eng; 1997 Oct; 44(10):909-20. PubMed ID: 9311160 [TBL] [Abstract][Full Text] [Related]
29. Considerations on surface and structural biocompatibility as prerequisite for long-term stability of neural prostheses. Stieglitz T J Nanosci Nanotechnol; 2004 May; 4(5):496-503. PubMed ID: 15503435 [TBL] [Abstract][Full Text] [Related]
30. Reliability of percutaneous intramuscular electrodes for upper extremity functional neuromuscular stimulation in adolescents with C5 tetraplegia. Smith BT; Betz RR; Mulcahey MJ; Triolo RJ Arch Phys Med Rehabil; 1994 Sep; 75(9):939-45. PubMed ID: 8085926 [TBL] [Abstract][Full Text] [Related]
31. [A new application of extraoral implants: the permanent percutaneous electrical connection. Apropos a case]. Sabin P; Frachet B; Kaluzinski E; Labbé D; Bonin B; Goga D Rev Stomatol Chir Maxillofac; 1999 Aug; 100(3):123-31. PubMed ID: 10522323 [TBL] [Abstract][Full Text] [Related]
32. A personalized sensor-controlled microstimulator system for arm rehabilitation poststroke. Part 1: System architecture. Merrill DR; Davis R; Turk R; Burridge JH Neuromodulation; 2011 Jan; 14(1):72-9; discussion 79. PubMed ID: 21992166 [TBL] [Abstract][Full Text] [Related]
33. Chronic vestibulo-ocular reflexes evoked by a vestibular prosthesis. Merfeld DM; Haburcakova C; Gong W; Lewis RF IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1005-15. PubMed ID: 17554820 [TBL] [Abstract][Full Text] [Related]
34. Wireless networks of injectable microelectronic stimulators based on rectification of volume conducted high frequency currents. García-Moreno A; Comerma-Montells A; Tudela-Pi M; Minguillon J; Becerra-Fajardo L; Ivorra A J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36041421 [No Abstract] [Full Text] [Related]
35. [Electronic visual prostheses]. Walter P Klin Monbl Augenheilkd; 2005 Jun; 222(6):471-9. PubMed ID: 15973625 [TBL] [Abstract][Full Text] [Related]
36. Neural prostheses in clinical applications--trends from precision mechanics towards biomedical microsystems in neurological rehabilitation. Stieglitz T; Schuettler M; Koch KP Biomed Tech (Berl); 2004 Apr; 49(4):72-7. PubMed ID: 15171585 [TBL] [Abstract][Full Text] [Related]
37. Image processing for a high-resolution optoelectronic retinal prosthesis. Asher A; Segal WA; Baccus SA; Yaroslavsky LP; Palanker DV IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):993-1004. PubMed ID: 17554819 [TBL] [Abstract][Full Text] [Related]
38. Wireless Stimulation of Motor Cortex Through a Collagen Dura Substitute Using an Ultra-Thin Implant Fabricated on Parylene/PDMS. Benbuk A; Gulick D; Moniz-Garcia D; Liu S; Quinones-Hinojosa A; Christen JB IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):334-346. PubMed ID: 37910421 [TBL] [Abstract][Full Text] [Related]
39. Long-term gliosis around chronically implanted platinum electrodes in the Rhesus macaque motor cortex. Griffith RW; Humphrey DR Neurosci Lett; 2006 Oct; 406(1-2):81-6. PubMed ID: 16905255 [TBL] [Abstract][Full Text] [Related]
40. Recruitment properties of intramuscular and nerve-trunk stimulating electrodes. Singh K; Richmond FJ; Loeb GE IEEE Trans Rehabil Eng; 2000 Sep; 8(3):276-85. PubMed ID: 11001507 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]