BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 19551771)

  • 41. Functionalization vs. fragmentation: n-aldehyde oxidation mechanisms and secondary organic aerosol formation.
    Chacon-Madrid HJ; Presto AA; Donahue NM
    Phys Chem Chem Phys; 2010 Nov; 12(42):13975-82. PubMed ID: 20856967
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation of oxidative damage by nitroxide free radicals.
    Dragutan I; Mehlhorn RJ
    Free Radic Res; 2007 Mar; 41(3):303-15. PubMed ID: 17364959
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Malondialdehyde, a lipid-derived aldehyde alters the reactivity of Cys34 and the esterase activity of serum albumin.
    Suji G; Sivakami S
    Toxicol In Vitro; 2008 Apr; 22(3):618-24. PubMed ID: 18206343
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics of the competitive degradation of deoxyribose and other molecules by hydroxyl radicals produced by the Fenton reaction in the presence of ascorbic acid.
    Zhao MJ; Jung L
    Free Radic Res; 1995 Sep; 23(3):229-43. PubMed ID: 7581818
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thiols alter the partitioning of calicheamicin-induced deoxyribose 4'-oxidation reactions in the absence of DNA radical repair.
    Lopez-Larraza DM; Moore K; Dedon PC
    Chem Res Toxicol; 2001 May; 14(5):528-35. PubMed ID: 11368551
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of various vitamins and coenzymes Q on reactions involving alpha-hydroxyl-containing radicals.
    Shadyro OI; Sosnovskaya AA; Edimecheva IP; Grintsevich IB; Lagutin PY; Alekseev AV; Kazem K
    Free Radic Res; 2005 Jul; 39(7):713-8. PubMed ID: 16036350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Radiation-induced micronucleus formation and DNA damage in human lymphocytes and their prevention by antioxidant thiols.
    Tiwari P; Kumar A; Balakrishnan S; Kushwaha HS; Mishra KP
    Mutat Res; 2009 May; 676(1-2):62-8. PubMed ID: 19486866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thiol-containing molecules interact with the myeloperoxidase/H2O2/chloride system to inhibit LDL oxidation.
    Van Antwerpen P; Boudjeltia KZ; Babar S; Legssyer I; Moreau P; Moguilevsky N; Vanhaeverbeek M; Ducobu J; Nève J
    Biochem Biophys Res Commun; 2005 Nov; 337(1):82-8. PubMed ID: 16171780
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Addition-elimination in the reaction of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid and nicotinic acid: example of inner sphere organic electron transfer.
    Dhiman SB; Naik DB
    J Phys Chem A; 2007 Nov; 111(45):11493-9. PubMed ID: 17941618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reaction of oleic acid particles with NO3 radicals: Products, mechanism, and implications for radical-initiated organic aerosol oxidation.
    Docherty KS; Ziemann PJ
    J Phys Chem A; 2006 Mar; 110(10):3567-77. PubMed ID: 16526637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The rate constants of the reaction of hydroxyl radicals (*OH) with alcohol dehydrogenase and Glyceraldehyde-3-phosphate dehydrogenase.
    Kowalczyk A; Puchała M
    Cell Mol Biol Lett; 2003; 8(3):841-8. PubMed ID: 12949623
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical investigation of the formation of a new series of antioxidant depsides from the radiolysis of flavonoid compounds.
    Kozlowski D; Marsal P; Steel M; Mokrini R; Duroux JL; Lazzaroni R; Trouillas P
    Radiat Res; 2007 Aug; 168(2):243-52. PubMed ID: 17638407
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydroxyl radical scavenging effects of guaiacol used in traditional dental pulp sedation: reaction kinetic study.
    Mimurai T; Yazaki K; Sawaki K; Ozawa T; Kawaguchi M
    Biomed Res; 2005 Aug; 26(4):139-45. PubMed ID: 16152729
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A surprisingly complex aqueous chemistry of the simplest amino acid. A pulse radiolysis and theoretical study on H/D kinetic isotope effects in the reaction of glycine anions with hydroxyl radicals.
    Stefanić I; Ljubić I; Bonifacić M; Sabljić A; Asmus KD; Armstrong DA
    Phys Chem Chem Phys; 2009 Apr; 11(13):2256-67. PubMed ID: 19305899
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effects of ascorbic acid on homolytic processes involving alpha-hydroxyl-containing carbon-centered radicals.
    Brinkevich SD; Shadyro OI
    Bioorg Med Chem Lett; 2008 Dec; 18(24):6448-50. PubMed ID: 18986808
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Yields of glyoxal and ring-cleavage co-products from the OH radical-initiated reactions of naphthalene and selected alkylnaphthalenes.
    Nishino N; Arey J; Atkinson R
    Environ Sci Technol; 2009 Nov; 43(22):8554-60. PubMed ID: 20028051
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics and mechanism of the addition of nucleophiles to alpha,beta-unsaturated thiol esters.
    Hartman RF; Rose SD
    J Org Chem; 2006 Aug; 71(17):6342-50. PubMed ID: 16901114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antioxidant activity and free radical scavenging reactions of hydroxybenzyl alcohols. Biochemical and pulse radiolysis studies.
    Dhiman SB; Kamat JP; Naik DB
    Chem Biol Interact; 2009 Dec; 182(2-3):119-27. PubMed ID: 19665455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reaction rates of glutathione and ascorbate with alkyl radicals are too slow for protection against protein peroxidation in vivo.
    Nauser T; Gebicki JM
    Arch Biochem Biophys; 2017 Nov; 633():118-123. PubMed ID: 28939102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The reaction of sulfhydryl groups with carbonyl compounds.
    Włodek L
    Acta Biochim Pol; 1988; 35(4):307-17. PubMed ID: 3247807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.