BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

747 related articles for article (PubMed ID: 19551880)

  • 1. The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production.
    Munro SA; Zinder SH; Walker LP
    Biotechnol Prog; 2009; 25(4):1035-42. PubMed ID: 19551880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition.
    Nguyen TA; Han SJ; Kim JP; Kim MS; Sim SJ
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S38-41. PubMed ID: 19361983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana.
    Eriksen NT; Nielsen TM; Iversen N
    Biotechnol Lett; 2008 Jan; 30(1):103-9. PubMed ID: 17849086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H(2) production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions.
    Van Ooteghem SA; Jones A; Van Der Lelie D; Dong B; Mahajan D
    Biotechnol Lett; 2004 Aug; 26(15):1223-32. PubMed ID: 15289678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H(2) synthesis from pentoses and biomass in Thermotoga spp.
    Eriksen NT; Riis ML; Holm NK; Iversen N
    Biotechnol Lett; 2011 Feb; 33(2):293-300. PubMed ID: 20960218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of feed glucose and acetic acid on continuous biohydrogen production by Thermotoga neapolitana.
    Dreschke G; Papirio S; Sisinni DMG; Lens PNL; Esposito G
    Bioresour Technol; 2019 Feb; 273():416-424. PubMed ID: 30463055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprocess parameters and oxygen transfer characteristics in beta-lactamase production by Bacillus species.
    Celik E; Calik P
    Biotechnol Prog; 2004; 20(2):491-9. PubMed ID: 15058994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species.
    Bandlish RK; Michael Hess J; Epting KL; Vieille C; Kelly RM
    Biotechnol Bioeng; 2002 Oct; 80(2):185-94. PubMed ID: 12209774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana.
    Pradhan N; Dipasquale L; d'Ippolito G; Panico A; Lens PN; Esposito G; Fontana A
    Int J Mol Sci; 2015 Jun; 16(6):12578-600. PubMed ID: 26053393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus.
    de Vrije T; Mars AE; Budde MA; Lai MH; Dijkema C; de Waard P; Claassen PA
    Appl Microbiol Biotechnol; 2007 Apr; 74(6):1358-67. PubMed ID: 17216445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11.
    Nath K; Kumar A; Das D
    Can J Microbiol; 2006 Jun; 52(6):525-32. PubMed ID: 16788720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH.
    Tang GL; Huang J; Sun ZJ; Tang QQ; Yan CH; Liu GQ
    J Biosci Bioeng; 2008 Jul; 106(1):80-7. PubMed ID: 18691536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.
    Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY
    Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields.
    Dipasquale L; Adessi A; d'Ippolito G; Rossi F; Fontana A; De Philippis R
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):1001-10. PubMed ID: 25467925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic modeling of hydrogen and L-lactic acid production by Thermotoga neapolitana via capnophilic lactic fermentation of starch.
    Pradhan N; d'Ippolito G; Dipasquale L; Esposito G; Panico A; Lens PNL; Fontana A
    Bioresour Technol; 2021 Jul; 332():125127. PubMed ID: 33873006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic approach to anaerobic hydrogen-producing process.
    Mu Y; Yu HQ; Wang G
    Water Res; 2007 Mar; 41(5):1152-60. PubMed ID: 17267006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae.
    Shang F; Wen S; Wang X; Tan T
    J Biosci Bioeng; 2006 Jan; 101(1):38-41. PubMed ID: 16503289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of acetogenic H2 consumption in dark fermentation and effectiveness of pH.
    Calli B; Zhao J; Nijssen E; Vanbroekhoven K
    Water Sci Technol; 2008; 57(6):809-14. PubMed ID: 18413938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana.
    Pradhan N; Dipasquale L; d'Ippolito G; Fontana A; Panico A; Pirozzi F; Lens PNL; Esposito G
    Water Res; 2016 Aug; 99():225-234. PubMed ID: 27166592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.