These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19551978)

  • 1. Characterization of individual nano-objects by secondary ion mass spectrometry.
    Pinnick V; Rajagopalachary S; Verkhoturov SV; Kaledin L; Schweikert EA
    Anal Chem; 2008 Dec; 80(23):9052-7. PubMed ID: 19551978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular identification of individual nano-objects.
    Pinnick VT; Verkhoturov SV; Kaledin L; Bisrat Y; Schweikert EA
    Anal Chem; 2009 Sep; 81(18):7527-31. PubMed ID: 19655772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanovolume analysis with secondary ion mass spectrometry using massive projectiles.
    Li Z; Verkhoturov SV; Schweikert EA
    Anal Chem; 2006 Nov; 78(21):7410-6. PubMed ID: 17073406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced surface sensitivity in secondary ion mass spectrometric analysis of organic thin films using size-selected Ar gas-cluster ion projectiles.
    Tanaka M; Moritani K; Hirota T; Toyoda N; Yamada I; Inui N; Mochiji K
    Rapid Commun Mass Spectrom; 2010 May; 24(10):1405-10. PubMed ID: 20411579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of metal nanoparticles on the secondary ion yields of a model alkane molecule upon atomic and polyatomic projectiles in secondary ion mass spectrometry.
    Wehbe N; Heile A; Arlinghaus HF; Bertrand P; Delcorte A
    Anal Chem; 2008 Aug; 80(16):6235-44. PubMed ID: 18630928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of individual ag nanoparticles and their chemical environment.
    Rajagopalachary S; Verkhoturov SV; Schweikert EA
    Anal Chem; 2009 Feb; 81(3):1089-94. PubMed ID: 19105605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TOF-SIMS analysis using C60. Effect of impact energy on yield and damage.
    Fletcher JS; Conlan XA; Jones EA; Biddulph G; Lockyer NP; Vickerman JC
    Anal Chem; 2006 Mar; 78(6):1827-31. PubMed ID: 16536417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypervelocity cluster ion impacts on free standing graphene: Experiment, theory, and applications.
    Verkhoturov SV; Gołuński M; Verkhoturov DS; Czerwinski B; Eller MJ; Geng S; Postawa Z; Schweikert EA
    J Chem Phys; 2019 Apr; 150(16):160901. PubMed ID: 31042896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic ion bombardment of Ag surfaces by C60+ and Ga+ projectiles.
    Sun S; Szakal C; Winograd N; Wucher A
    J Am Soc Mass Spectrom; 2005 Oct; 16(10):1677-86. PubMed ID: 16099165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary-ion and electron production from surfaces bombarded by large polyatomic ions.
    Martens J; Ens W; Standing KG; Verentchikov A
    Rapid Commun Mass Spectrom; 1992 Feb; 6(2):147-57. PubMed ID: 1504342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal nanoparticle deposition for TOF-SIMS signal enhancement of polymers.
    Marcus A; Winograd N
    Anal Chem; 2006 Jan; 78(1):141-8. PubMed ID: 16383321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth profiling of peptide films with TOF-SIMS and a C60 probe.
    Cheng J; Winograd N
    Anal Chem; 2005 Jun; 77(11):3651-9. PubMed ID: 15924401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary ion mass spectrometric characterization of nail polishes and paint surfaces.
    Gresham GL; Groenewold GS; Bauer WF; Ingram JC
    J Forensic Sci; 2000 Mar; 45(2):310-23. PubMed ID: 10782951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic surfaces excited by low-energy ions: atomic collisions, molecular desorption and buckminsterfullerenes.
    Delcorte A
    Phys Chem Chem Phys; 2005 Oct; 7(19):3395-406. PubMed ID: 16273138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of beryllium particles from CAlSiFrit.
    Muller C; L'Esperance G; Plamondon P; Kennedy G; Zayed J
    J Toxicol Environ Health A; 2008; 71(16):1091-9. PubMed ID: 18569621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding gold-thiolate cluster emission from self-assembled monolayers upon kiloelectronvolt ion bombardment.
    Arezki B; Delcorte A; Garrison BJ; Bertrand P
    J Phys Chem B; 2006 Apr; 110(13):6832-40. PubMed ID: 16570992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of monoatomic and polyatomic projectiles for the characterisation of polylactic acid by static secondary ion mass spectrometry.
    Boschmans B; Van Royen P; Van Vaeck L
    Rapid Commun Mass Spectrom; 2005; 19(18):2517-27. PubMed ID: 16106345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample metallization for performance improvement in desorption/ionization of kilodalton molecules: quantitative evaluation, imaging secondary ion MS, and laser ablation.
    Delcorte A; Bour J; Aubriet F; Muller JF; Bertrand P
    Anal Chem; 2003 Dec; 75(24):6875-85. PubMed ID: 14670048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Au(n) cluster probe in secondary ion mass spectrometry: influence of the projectile size and energy on the desorption/ionization rate from biomolecular solids.
    Novikov A; Caroff M; Della-Negra S; Depauw J; Fallavier M; Le Beyec Y; Pautrat M; Schultz JA; Tempez A; Woods AS
    Rapid Commun Mass Spectrom; 2005; 19(13):1851-7. PubMed ID: 15945024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation study of tellurium cluster ions, Te(n)(+) (n = 25-85) using secondary ion mass spectrometry.
    Ito H; Matsuo T; Sato T; Ichiharai T; Katakuse I
    J Mass Spectrom; 2000 Feb; 35(2):168-71. PubMed ID: 10679977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.