These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
445 related articles for article (PubMed ID: 19552347)
1. Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Kennedy IM; Wilson D; Barakat AI; Res Rep Health Eff Inst; 2009 Jan; (136):3-32. PubMed ID: 19552347 [TBL] [Abstract][Full Text] [Related]
2. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Gojova A; Guo B; Kota RS; Rutledge JC; Kennedy IM; Barakat AI Environ Health Perspect; 2007 Mar; 115(3):403-9. PubMed ID: 17431490 [TBL] [Abstract][Full Text] [Related]
3. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Zhu MT; Wang B; Wang Y; Yuan L; Wang HJ; Wang M; Ouyang H; Chai ZF; Feng WY; Zhao YL Toxicol Lett; 2011 Jun; 203(2):162-71. PubMed ID: 21439359 [TBL] [Abstract][Full Text] [Related]
4. Zinc oxide particles induce inflammatory responses in vascular endothelial cells via NF-κB signaling. Tsou TC; Yeh SC; Tsai FY; Lin HJ; Cheng TJ; Chao HR; Tai LA J Hazard Mater; 2010 Nov; 183(1-3):182-8. PubMed ID: 20674161 [TBL] [Abstract][Full Text] [Related]
5. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells. Gojova A; Lee JT; Jung HS; Guo B; Barakat AI; Kennedy IM Inhal Toxicol; 2009 Jul; 21 Suppl 1(Suppl 1):123-30. PubMed ID: 19558244 [TBL] [Abstract][Full Text] [Related]
6. Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Frampton MW; Utell MJ; Zareba W; Oberdörster G; Cox C; Huang LS; Morrow PE; Lee FE; Chalupa D; Frasier LM; Speers DM; Stewart J Res Rep Health Eff Inst; 2004 Dec; (126):1-47; discussion 49-63. PubMed ID: 15768531 [TBL] [Abstract][Full Text] [Related]
7. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles. Sun J; Wang S; Zhao D; Hun FH; Weng L; Liu H Cell Biol Toxicol; 2011 Oct; 27(5):333-42. PubMed ID: 21681618 [TBL] [Abstract][Full Text] [Related]
8. Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production. Berg JM; Ho S; Hwang W; Zebda R; Cummins K; Soriaga MP; Taylor R; Guo B; Sayes CM Chem Res Toxicol; 2010 Dec; 23(12):1874-82. PubMed ID: 21067130 [TBL] [Abstract][Full Text] [Related]
9. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Horie M; Nishio K; Fujita K; Endoh S; Miyauchi A; Saito Y; Iwahashi H; Yamamoto K; Murayama H; Nakano H; Nanashima N; Niki E; Yoshida Y Chem Res Toxicol; 2009 Mar; 22(3):543-53. PubMed ID: 19216582 [TBL] [Abstract][Full Text] [Related]
10. Electrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium. Chanteau B; Fresnais J; Berret JF Langmuir; 2009 Aug; 25(16):9064-70. PubMed ID: 19572532 [TBL] [Abstract][Full Text] [Related]
11. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Song W; Zhang J; Guo J; Zhang J; Ding F; Li L; Sun Z Toxicol Lett; 2010 Dec; 199(3):389-97. PubMed ID: 20934491 [TBL] [Abstract][Full Text] [Related]
12. Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Brandenberger C; Rothen-Rutishauser B; Mühlfeld C; Schmid O; Ferron GA; Maier KL; Gehr P; Lenz AG Toxicol Appl Pharmacol; 2010 Jan; 242(1):56-65. PubMed ID: 19796648 [TBL] [Abstract][Full Text] [Related]
13. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Napierska D; Thomassen LC; Rabolli V; Lison D; Gonzalez L; Kirsch-Volders M; Martens JA; Hoet PH Small; 2009 Apr; 5(7):846-53. PubMed ID: 19288475 [TBL] [Abstract][Full Text] [Related]
14. Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Heng BC; Zhao X; Xiong S; Ng KW; Boey FY; Loo JS Food Chem Toxicol; 2010 Jun; 48(6):1762-6. PubMed ID: 20412830 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle interactions with zinc and iron: implications for toxicology and inflammation. Wilson MR; Foucaud L; Barlow PG; Hutchison GR; Sales J; Simpson RJ; Stone V Toxicol Appl Pharmacol; 2007 Nov; 225(1):80-9. PubMed ID: 17900645 [TBL] [Abstract][Full Text] [Related]
16. Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. Fang X; Yu R; Li B; Somasundaran P; Chandran K J Colloid Interface Sci; 2010 Aug; 348(2):329-34. PubMed ID: 20546765 [TBL] [Abstract][Full Text] [Related]
17. Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles. Lu S; Zhang W; Zhang R; Liu P; Wang Q; Shang Y; Wu M; Donaldson K; Wang Q Part Fibre Toxicol; 2015 Mar; 12():5. PubMed ID: 25888760 [TBL] [Abstract][Full Text] [Related]
18. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Rosas-Hernández H; Jiménez-Badillo S; Martínez-Cuevas PP; Gracia-Espino E; Terrones H; Terrones M; Hussain SM; Ali SF; González C Toxicol Lett; 2009 Dec; 191(2-3):305-13. PubMed ID: 19800954 [TBL] [Abstract][Full Text] [Related]
19. Pro-inflammatory potential of ultrafine particles in mono- and co-cultures of primary cardiac cells. Totlandsdal AI; Skomedal T; Låg M; Osnes JB; Refsnes M Toxicology; 2008 May; 247(1):23-32. PubMed ID: 18339468 [TBL] [Abstract][Full Text] [Related]
20. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. Newman MD; Stotland M; Ellis JI J Am Acad Dermatol; 2009 Oct; 61(4):685-92. PubMed ID: 19646780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]