These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 19552391)
1. Interfacial synthesis and widely controllable conductivity of polythiophene microparticles. Li XG; Li J; Meng QK; Huang MR J Phys Chem B; 2009 Jul; 113(29):9718-27. PubMed ID: 19552391 [TBL] [Abstract][Full Text] [Related]
2. Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles. Li XG; Li J; Huang MR Chemistry; 2009 Jun; 15(26):6446-55. PubMed ID: 19466721 [TBL] [Abstract][Full Text] [Related]
3. Optimization of polymerization conditions of furan with aniline for variable conducting polymers. Li XG; Kang Y; Huang MR J Comb Chem; 2006; 8(5):670-8. PubMed ID: 16961405 [TBL] [Abstract][Full Text] [Related]
4. Productive synthesis and properties of polydiaminoanthraquinone and its pure self-stabilized nanoparticles with widely adjustable electroconductivity. Li XG; Li H; Huang MR Chemistry; 2007; 13(31):8884-96. PubMed ID: 17654455 [TBL] [Abstract][Full Text] [Related]
5. Self-stabilized nanoparticles of intrinsically conducting copolymers from 5-sulfonic-2-anisidine. Li XG; Lü QF; Huang MR Small; 2008 Aug; 4(8):1201-9. PubMed ID: 18666162 [TBL] [Abstract][Full Text] [Related]
6. Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity. Li XG; Li A; Huang MR Chemistry; 2008; 14(33):10309-17. PubMed ID: 18830982 [TBL] [Abstract][Full Text] [Related]
7. Facile synthesis and optimization of conductive copolymer nanoparticles and nanocomposite films from aniline with sulfodiphenylamine. Li XG; Lü QF; Huang MR Chemistry; 2006 Feb; 12(5):1349-59. PubMed ID: 16294356 [TBL] [Abstract][Full Text] [Related]
8. Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles. Li XG; Ma XL; Sun J; Huang MR Langmuir; 2009 Feb; 25(3):1675-84. PubMed ID: 19132885 [TBL] [Abstract][Full Text] [Related]
9. Simple efficient synthesis of strongly luminescent polypyrene with intrinsic conductivity and high carbon yield by chemical oxidative polymerization of pyrene. Li XG; Liu YW; Huang MR; Peng S; Gong LZ; Moloney MG Chemistry; 2010 Apr; 16(16):4803-13. PubMed ID: 20213778 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of poly(3-methyl thiophene) nanospheres in magnetic ionic liquid. Shang S; Li L; Yang X; Zheng L J Colloid Interface Sci; 2009 May; 333(1):415-8. PubMed ID: 19223039 [TBL] [Abstract][Full Text] [Related]
11. Facile synthesis and intrinsic conductivity of novel pyrrole copolymer nanoparticles with inherent self-stability. Li XG; Wei F; Huang MR; Xie YB J Phys Chem B; 2007 May; 111(21):5829-36. PubMed ID: 17480070 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical polymerization of fluoranthene and characterization of its polymers. Xu J; Hou J; Zhang S; Xiao Q; Zhang R; Pu S; Wei Q J Phys Chem B; 2006 Feb; 110(6):2643-8. PubMed ID: 16471866 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis of water-dispersible conducting polymer nanospheres. Liao Y; Li XG; Kaner RB ACS Nano; 2010 Sep; 4(9):5193-202. PubMed ID: 20822150 [TBL] [Abstract][Full Text] [Related]
14. Chemical vapor deposition synthesis of tunable unsubstituted polythiophene. Nejati S; Lau KK Langmuir; 2011 Dec; 27(24):15223-9. PubMed ID: 22047472 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of electroconducting narrowly distributed nanoparticles and nanocomposite films of orthanilic acid/aniline copolymers. Li XG; Zhang RR; Huang MR J Comb Chem; 2006; 8(2):174-83. PubMed ID: 16529512 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of new micrometer-sized radiopaque polymeric particles of narrow size distribution by a single-step swelling of uniform polystyrene template microspheres for X-ray imaging applications. Galperin A; Margel S Biomacromolecules; 2006 Sep; 7(9):2650-60. PubMed ID: 16961329 [TBL] [Abstract][Full Text] [Related]
17. Formation mechanism of conducting polypyrrole nanotubes in reverse micelle systems. Jang J; Yoon H Langmuir; 2005 Nov; 21(24):11484-9. PubMed ID: 16285830 [TBL] [Abstract][Full Text] [Related]
18. Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres. Yan Q; Bai Y; Meng Z; Yang W J Phys Chem B; 2008 Jun; 112(23):6914-22. PubMed ID: 18489142 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and heavy-metal-ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability. Lü QF; Huang MR; Li XG Chemistry; 2007; 13(21):6009-18. PubMed ID: 17487909 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence sensing of phytate in water using an isothiouronium-attached polythiophene. Minami T; Kubo Y Chem Asian J; 2010 Mar; 5(3):605-11. PubMed ID: 20095000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]