These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19552476)

  • 21. Crystal growth simulations of H(2)S hydrate.
    Liang S; Kusalik PG
    J Phys Chem B; 2010 Jul; 114(29):9563-71. PubMed ID: 20597531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How much carbon dioxide can be stored in the structure H clathrate hydrates?: a molecular dynamics study.
    Alavi S; Woo TK
    J Chem Phys; 2007 Jan; 126(4):044703. PubMed ID: 17286495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linking microscopic guest properties to macroscopic observables in clathrate hydrates: guest-host hydrogen bonding.
    Alavi S; Susilo R; Ripmeester JA
    J Chem Phys; 2009 May; 130(17):174501. PubMed ID: 19425784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics study of structure H clathrate hydrates of methane and large guest molecules.
    Susilo R; Alavi S; Ripmeester JA; Englezos P
    J Chem Phys; 2008 May; 128(19):194505. PubMed ID: 18500878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of hydrogen-molecule guests in type II clathrate hydrates using a force-matched potential model parameterised from ab initio molecular dynamics.
    Burnham CJ; Futera Z; English NJ
    J Chem Phys; 2018 Mar; 148(10):102323. PubMed ID: 29544277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and characterization of clathrate hydrates containing carbon dioxide and ethanol.
    Makiya T; Murakami T; Takeya S; Sum AK; Alavi S; Ohmura R
    Phys Chem Chem Phys; 2010 Sep; 12(33):9927-32. PubMed ID: 20532336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide aggregation and solvent electrostriction in a simple zwitterionic dipeptide via molecular dynamics simulations.
    Tulip PR; Bates SP
    J Chem Phys; 2009 Jul; 131(1):015103. PubMed ID: 19586124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulations of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX) using a combined Sorescu-Rice-Thompson AMBER force field.
    Agrawal PM; Rice BM; Zheng L; Thompson DL
    J Phys Chem B; 2006 Dec; 110(51):26185-8. PubMed ID: 17181274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectroscopic signatures of halogens in clathrate hydrate cages. 2. Iodine.
    Kerenskaya G; Goldschleger IU; Apkarian VA; Fleischer E; Janda KC
    J Phys Chem A; 2007 Nov; 111(43):10969-76. PubMed ID: 17918814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water models based on a single potential energy surface and different molecular degrees of freedom.
    Saint-Martin H; Hernández-Cobos J; Ortega-Blake I
    J Chem Phys; 2005 Jun; 122(22):224509. PubMed ID: 15974693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase relations and binary clathrate hydrate formation in the system H2-THF-H2O.
    Anderson R; Chapoy A; Tohidi B
    Langmuir; 2007 Mar; 23(6):3440-4. PubMed ID: 17286423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the accuracy of force fields for predicting the physical properties of dimethylnitramine.
    Zheng L; Thompson DL
    J Phys Chem B; 2006 Aug; 110(32):16082-8. PubMed ID: 16898765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calorimetric and X-ray studies of clathrate hydrates of tetraisoamylammonium polyacrylates.
    Terekhova IS; Manakov AY; Soldatov DV; Suwinska K; Skiba SS; Stenin YG; Villevald GV; Karpova TD; Yunoshev AS
    J Phys Chem B; 2009 Apr; 113(17):5760-8. PubMed ID: 19344169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic stability of type-I and type-II clathrate hydrates depending on the chemical species of the guest substances.
    Miyoshi T; Imai M; Ohmura R; Yasuoka K
    J Chem Phys; 2007 Jun; 126(23):234506. PubMed ID: 17600424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water.
    Jacobson LC; Hujo W; Molinero V
    J Phys Chem B; 2009 Jul; 113(30):10298-307. PubMed ID: 19585976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clathrate III (Bromine Hydrate): Structural Relationship with Clathrate I.
    Pomeransky AA
    Chemphyschem; 2020 Jul; 21(14):1587-1596. PubMed ID: 32337782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulations of surface-initiated melting of nitromethane.
    Siavosh-Haghighi A; Thompson DL
    J Chem Phys; 2006 Nov; 125(18):184711. PubMed ID: 17115783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical examination of known and hypothetical clathrate hydrate materials.
    Tribello GA; Slater B
    J Chem Phys; 2009 Jul; 131(2):024703. PubMed ID: 19604006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and dynamical properties of methane clathrate hydrates.
    English NJ; Macelroy JM
    J Comput Chem; 2003 Oct; 24(13):1569-81. PubMed ID: 12926001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the thermodynamic stability of hydrogen clathrate hydrates.
    Katsumasa K; Koga K; Tanaka H
    J Chem Phys; 2007 Jul; 127(4):044509. PubMed ID: 17672709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.