BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 195526)

  • 1. The stereospecificity of bacterial external flavoprotein monooxygenases for nicotinamide adenine dinucleotide.
    You KS; Arnold LJ; Kaplan NO
    Arch Biochem Biophys; 1977 Apr; 180(2):550-4. PubMed ID: 195526
    [No Abstract]   [Full Text] [Related]  

  • 2. Reactivity of an FAD-dependent oxygenase with free flavins: a new mode of uncoupling in flavoprotein oxygenases.
    Kishore GM; Snell EE
    Biochem Biophys Res Commun; 1979 Mar; 87(2):518-23. PubMed ID: 220977
    [No Abstract]   [Full Text] [Related]  

  • 3. Kinetic isotope effects in the oxidation of isotopically labeled NAD(P)H by bacterial flavoprotein monooxygenases.
    Ryerson CC; Ballou DP; Walsh C
    Biochemistry; 1982 Mar; 21(6):1144-51. PubMed ID: 7074071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic investigations on a flavoprotein oxygenase, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Kishore GM; Snell EE
    J Biol Chem; 1981 May; 256(9):4228-33. PubMed ID: 7217080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases.
    Olucha J; Lamb AL
    Bioorg Chem; 2011 Dec; 39(5-6):171-7. PubMed ID: 21871647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of action of the flavoprotein melilotate hydroxylase.
    Strickland S; Massey V
    J Biol Chem; 1973 Apr; 248(8):2953-62. PubMed ID: 4348921
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural studies and synthetic applications of Baeyer-Villiger monooxygenases.
    Willetts A
    Trends Biotechnol; 1997 Feb; 15(2):55-62. PubMed ID: 9081299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The purification and properties of 4-hydroxyisophthalate hydroxylase from Pseudomonas putida NCIB 9866.
    Elmorsi EA; Hopper DJ
    Eur J Biochem; 1977 Jun; 76(1):197-208. PubMed ID: 18349
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of 4,4-dideuteration of reduced nicotinamide-adenine dinucleotide phosphate on the mixed function oxidases of hepatic microsomes.
    Holtzman JL
    Biochemistry; 1970 Feb; 9(4):995-1001. PubMed ID: 4392052
    [No Abstract]   [Full Text] [Related]  

  • 11. Stereospecificity of hydride transfer in the flavin mono-oxygenase orcinol hydroxylase.
    Higgins IJ; Ribbons DW
    Biochem J; 1972 Apr; 127(3):65P. PubMed ID: 4342495
    [No Abstract]   [Full Text] [Related]  

  • 12. The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate.
    Wicht DK
    Arch Biochem Biophys; 2016 Aug; 604():159-66. PubMed ID: 27392454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600.
    Powlowski J; Shingler V
    J Bacteriol; 1990 Dec; 172(12):6834-40. PubMed ID: 2254259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of the Apo and FAD-bound forms of 2-hydroxybiphenyl 3-monooxygenase (HbpA) locate activity hotspots identified by using directed evolution.
    Jensen CN; Mielke T; Farrugia JE; Frank A; Man H; Hart S; Turkenburg JP; Grogan G
    Chembiochem; 2015 Apr; 16(6):968-76. PubMed ID: 25737306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A soluble methylene hydroxylase system: structure and role of cytochrome P-450 and iron-sulfur protein components.
    Gunsalus IC
    Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1610-3. PubMed ID: 4317681
    [No Abstract]   [Full Text] [Related]  

  • 16. The purification and properties of the flavoprotein melilotate hydroxylase.
    Strickland S; Massey V
    J Biol Chem; 1973 Apr; 248(8):2944-52. PubMed ID: 4348920
    [No Abstract]   [Full Text] [Related]  

  • 17. Pseudomonas cepacia 3-hydroxybenzoate 6-hydroxylase: stereochemistry, isotope effects, and kinetic mechanism.
    Yu YM; Wang LH; Tu SC
    Biochemistry; 1987 Feb; 26(4):1105-10. PubMed ID: 3552041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereochemistry and accessibility of prosthetic groups in flavoproteins.
    Manstein DJ; Massey V; Ghisla S; Pai EF
    Biochemistry; 1988 Apr; 27(7):2300-5. PubMed ID: 2898258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and spectroscopic characterization of 1-naphthol 2-hydroxylase from Pseudomonas sp. strain C5.
    Trivedi VD; Majhi P; Phale PS
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3964-77. PubMed ID: 24599669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and properties of flavoprotein-cytochrome hybrids by recombination of subunits from different species.
    Koerber SC; Hopper DJ; McIntire WS; Singer TP
    Biochem J; 1985 Oct; 231(2):383-7. PubMed ID: 4062904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.