BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 195526)

  • 21. A covalent nicotinamide adenine dinucleotide intermediate in the urocanase reaction.
    Matherly LH; DeBrosse CW; Phillips AT
    Biochemistry; 1982 May; 21(11):2789-94. PubMed ID: 6124273
    [No Abstract]   [Full Text] [Related]  

  • 22. A possible radical mechanism for the functioning of flavoprotein phenolic hydroxylases.
    Anderson RF
    Prog Clin Biol Res; 1988; 274():167-78. PubMed ID: 3043459
    [No Abstract]   [Full Text] [Related]  

  • 23. Specificity of a catabolic pathway--a lesson learned from indirect assays.
    Ribbons DW; Ota Y; Higgins IJ
    J Bacteriol; 1971 May; 106(2):702-3. PubMed ID: 4324808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequential action of two flavoenzymes, PgaE and PgaM, in angucycline biosynthesis: chemoenzymatic synthesis of gaudimycin C.
    Kallio P; Liu Z; Mäntsälä P; Niemi J; Metsä-Ketelä M
    Chem Biol; 2008 Feb; 15(2):157-66. PubMed ID: 18291320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of the flavoprotein tryptophan 2-monooxygenase expressed at high levels in Escherichia coli.
    Emanuele JJ; Heasley CJ; Fitzpatrick PF
    Arch Biochem Biophys; 1995 Jan; 316(1):241-8. PubMed ID: 7840624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of synthetic inhibitors to study the interaction of nicotinamide adenine dinucleotide with yeast alcohol dehydrogenase.
    Veinberg AYa ; Gracheva IN; Mishchenko VV; Rubchinskaya YuM ; Kustanovich IM; Samokhvalov GI
    Mol Biol; 1974 May; 7(6):723-8. PubMed ID: 4365211
    [No Abstract]   [Full Text] [Related]  

  • 27. Retention of deuterium in p-tyrosine formed enzymatically from p-deuterophenylalanine.
    Guroff G; Reifsnyder CA; Daly J
    Biochem Biophys Res Commun; 1966 Sep; 24(5):720-4. PubMed ID: 5970504
    [No Abstract]   [Full Text] [Related]  

  • 28. Insight into covalent flavinylation and catalysis from redox, spectral, and kinetic analyses of the R474K mutant of the flavoprotein subunit of p-cresol methylhydroxylase.
    Efimov I; Cronin CN; Bergmann DJ; Kuusk V; McIntire WS
    Biochemistry; 2004 May; 43(20):6138-48. PubMed ID: 15147198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ferroprotein component of a methylene hydroxylase.
    Cushman DW; Tsai RL; Gunsalus IC
    Biochem Biophys Res Commun; 1967 Mar; 26(5):577-83. PubMed ID: 4383050
    [No Abstract]   [Full Text] [Related]  

  • 30. The stereospecificity of nicotinamide-adenine dinucleotide-dependent oxidoreductases from plants.
    Davies DD; Teixeira A; Kenworthy P
    Biochem J; 1972 Apr; 127(2):335-43. PubMed ID: 4403953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of the hydride transfer stereospecificity of nicotinamide adenine dinucleotide linked oxidoreductases by proton magnetic resonance.
    Arnold LJ; You K; Allison WS; Kaplan NO
    Biochemistry; 1976 Nov; 15(22):4844-9. PubMed ID: 186097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monoxygenase system.
    Gelb MH; Heimbrook DC; Mälkönen P; Sligar SG
    Biochemistry; 1982 Jan; 21(2):370-7. PubMed ID: 7074020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The hydride transfer stereospecificity of nicotinamide adenine dinucleotide linked enzymes: a proton magnetic resonance technique.
    Arnold LJ; You K
    Methods Enzymol; 1978; 54():223-32. PubMed ID: 215874
    [No Abstract]   [Full Text] [Related]  

  • 34. Relationship between charge-transfer interactions, redox potentials, and catalysis for different forms of the flavoprotein component of p-cresol methylhydroxylase.
    Efimov I; McIntire WS
    J Am Chem Soc; 2005 Jan; 127(2):732-41. PubMed ID: 15643899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts.
    van Berkel WJ; Kamerbeek NM; Fraaije MW
    J Biotechnol; 2006 Aug; 124(4):670-89. PubMed ID: 16712999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of 5-hydroxyisophthalate 4-hydroxylase from a coryneform bacteria.
    Elmorsi EA; Hopper DJ
    Biochem Soc Trans; 1978; 6(5):958-9. PubMed ID: 33852
    [No Abstract]   [Full Text] [Related]  

  • 37. Intermediates in flavoprotein catalyzed hydroxylations.
    Entsch B; Massey V; Ballou DP
    Biochem Biophys Res Commun; 1974 Apr; 57(4):1018-25. PubMed ID: 4830743
    [No Abstract]   [Full Text] [Related]  

  • 38. Nuclear magnetic resonance study of the conformation of nicotinamide--adenine dinucleotide and reduced nicotinamide--adenine dinucleotide in solution.
    Catterall WA; Hollis DP; Walter CF
    Biochemistry; 1969 Oct; 8(10):4032-6. PubMed ID: 4310324
    [No Abstract]   [Full Text] [Related]  

  • 39. Studies on monooxygenases. 3. Examinations of metal participation in flavoprotein monooxygenases of pseudomonads.
    Yamamoto S; Takeda H; Maki Y; Hayaishi O
    J Biol Chem; 1969 Jun; 244(11):2951-5. PubMed ID: 4977233
    [No Abstract]   [Full Text] [Related]  

  • 40. Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5-6 double bond of reduced beta-nicotinamide adenine dinucleotide (betaNADH). Formation of beta-6-hydroxy-1,4,5,6-tetrahydronicotinamide adenine dinucleotide.
    Oppenheimer NJ; Kaplan NO
    Biochemistry; 1974 Nov; 13(23):4685-94. PubMed ID: 4371815
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.