These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 19552604)

  • 1. Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication.
    Murtuza B; Nichol JW; Khademhosseini A
    Tissue Eng Part B Rev; 2009 Dec; 15(4):443-54. PubMed ID: 19552604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration.
    Ghafar-Zadeh E; Waldeisen JR; Lee LP
    Lab Chip; 2011 Sep; 11(18):3031-48. PubMed ID: 21785806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro- and nanotechnology in cardiovascular tissue engineering.
    Zhang B; Xiao Y; Hsieh A; Thavandiran N; Radisic M
    Nanotechnology; 2011 Dec; 22(49):494003. PubMed ID: 22101261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured materials for cardiovascular tissue engineering.
    Ahmed M; Yildirimer L; Khademhosseini A; Seifalian AM
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4775-85. PubMed ID: 22905530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional scaffold-free microtissues engineered for cardiac repair.
    Patino-Guerrero A; Veldhuizen J; Zhu W; Migrino RQ; Nikkhah M
    J Mater Chem B; 2020 Sep; 8(34):7571-7590. PubMed ID: 32724973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional cardiac tissue fabrication based on cell sheet technology.
    Masuda S; Shimizu T
    Adv Drug Deliv Rev; 2016 Jan; 96():103-9. PubMed ID: 25980939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells.
    Choi MY; Kim JT; Lee WJ; Lee Y; Park KM; Yang YI; Park KD
    Acta Biomater; 2017 Mar; 50():234-248. PubMed ID: 28063988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of tissue constructs for cardiovascular regenerative medicine: from cell procurement to scaffold design.
    Tandon V; Zhang B; Radisic M; Murthy SK
    Biotechnol Adv; 2013; 31(5):722-35. PubMed ID: 22951918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro/nano replication and 3D assembling techniques for scaffold fabrication.
    Lima MJ; Correlo VM; Reis RL
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():615-21. PubMed ID: 25063161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin regeneration scaffolds: a multimodal bottom-up approach.
    Yildirimer L; Thanh NT; Seifalian AM
    Trends Biotechnol; 2012 Dec; 30(12):638-48. PubMed ID: 22981509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction.
    Jamaiyar A; Wan W; Ohanyan V; Enrick M; Janota D; Cumpston D; Song H; Stevanov K; Kolz CL; Hakobyan T; Dong F; Newby BZ; Chilian WM; Yin L
    Basic Res Cardiol; 2017 Jul; 112(4):41. PubMed ID: 28540527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing the potential of adult cardiac stem cells: lessons from haematopoiesis, the embryo and the niche.
    Balmer GM; Riley PR
    J Cardiovasc Transl Res; 2012 Oct; 5(5):631-40. PubMed ID: 22700450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-scaffolds as synthetic cell niches: recent advances and challenges.
    Weißenbruch K; Lemma ED; Hippler M; Bastmeyer M
    Curr Opin Biotechnol; 2022 Feb; 73():290-299. PubMed ID: 34619481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building a Total Bioartificial Heart: Harnessing Nature to Overcome the Current Hurdles.
    Taylor DA; Frazier OH; Elgalad A; Hochman-Mendez C; Sampaio LC
    Artif Organs; 2018 Oct; 42(10):970-982. PubMed ID: 30044011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering.
    Kharaziha M; Memic A; Akbari M; Brafman DA; Nikkhah M
    Adv Healthc Mater; 2016 Jul; 5(13):1533-53. PubMed ID: 27199266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of injectable hydrogels for cardiac stem cell therapy and tissue engineering.
    Alagarsamy KN; Yan W; Srivastava A; Desiderio V; Dhingra S
    Rev Cardiovasc Med; 2019 Dec; 20(4):221-230. PubMed ID: 31912713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.
    Liu Y; Fox V; Lei Y; Hu B; Joo KI; Wang P
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1101-12. PubMed ID: 24327412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro and nano-scale in vitro 3D culture system for cardiac stem cells.
    Hosseinkhani H; Hosseinkhani M; Hattori S; Matsuoka R; Kawaguchi N
    J Biomed Mater Res A; 2010 Jul; 94(1):1-8. PubMed ID: 20014298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial progenitors encapsulated in bioartificial niches are insulated from systemic cytotoxicity and are angiogenesis competent.
    Ratliff BB; Ghaly T; Brudnicki P; Yasuda K; Rajdev M; Bank M; Mares J; Hatzopoulos AK; Goligorsky MS
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F178-86. PubMed ID: 20410213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.