BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19552769)

  • 1. Establishment of a screening system for essential genes from the pathogenic yeast Candida glabrata: identification of a putative TEM1 homologue.
    Miyakawa Y; Hara T; Iimura Y
    Lett Appl Microbiol; 2009 Sep; 49(3):317-23. PubMed ID: 19552769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the essentiality of ROM2 genes in the pathogenic yeasts Candida glabrata and Candida albicans using temperature-sensitive mutants.
    Kanno T; Takekawa D; Miyakawa Y
    J Appl Microbiol; 2015 Apr; 118(4):851-63. PubMed ID: 25604069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular biological approach to screening essential genes as potential targets for antifungal targets in pathogenic yeast Candida].
    Miyakawa Y
    Med Mycol J; 2013; 54(2):117-22. PubMed ID: 23760075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a Candida glabrata homologue of the S. cerevisiae VRG4 gene, encoding the Golgi GDP-mannose transporter.
    Nishikawa A; Mendez B; Jigami Y; Dean N
    Yeast; 2002 Jun; 19(8):691-8. PubMed ID: 12185838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a gene encoding tRNA nucleotidyltransferase from Candida glabrata.
    Hanic-Joyce PJ; Joyce PB
    Yeast; 2002 Dec; 19(16):1399-411. PubMed ID: 12478587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Choice of an adequate promoter for efficient complementation in Saccharomyces cerevisiae: a case study.
    Lo Presti L; Cerutti L; Monod M; Hauser PM
    Res Microbiol; 2009; 160(6):380-8. PubMed ID: 19589384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in the CgPDR1 and CgERG11 genes in azole-resistant Candida glabrata clinical isolates from Slovakia.
    Berila N; Borecka S; Dzugasova V; Bojnansky J; Subik J
    Int J Antimicrob Agents; 2009 Jun; 33(6):574-8. PubMed ID: 19196495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata.
    Castaño I; Pan SJ; Zupancic M; Hennequin C; Dujon B; Cormack BP
    Mol Microbiol; 2005 Feb; 55(4):1246-58. PubMed ID: 15686568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A surprisingly large RNase P RNA in Candida glabrata.
    Kachouri R; Stribinskis V; Zhu Y; Ramos KS; Westhof E; Li Y
    RNA; 2005 Jul; 11(7):1064-72. PubMed ID: 15987816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins.
    de Groot PW; Kraneveld EA; Yin QY; Dekker HL; Gross U; Crielaard W; de Koster CG; Bader O; Klis FM; Weig M
    Eukaryot Cell; 2008 Nov; 7(11):1951-64. PubMed ID: 18806209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Isolation and primary identification of methylotrophic yeast Hansenula polymorpha mutants for peroxisome biogenesis].
    Kurbatova EM; Dutova TA; Serkova NN; Rabinovich IaM; Trotsenko Iu
    Genetika; 2004 May; 40(5):592-8. PubMed ID: 15272555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth.
    Vandeputte P; Tronchin G; Bergès T; Hennequin C; Chabasse D; Bouchara JP
    Antimicrob Agents Chemother; 2007 Mar; 51(3):982-90. PubMed ID: 17158937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel acid phosphatase in Candida glabrata suggests selective pressure and niche specialization in the phosphate signal transduction pathway.
    Orkwis BR; Davies DL; Kerwin CL; Sanglard D; Wykoff DD
    Genetics; 2010 Nov; 186(3):885-95. PubMed ID: 20739710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rapid method for promoter exchange in Aspergillus nidulans using recombinant PCR.
    Zarrin M; Leeder AC; Turner G
    Fungal Genet Biol; 2005 Jan; 42(1):1-8. PubMed ID: 15588991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis.
    Voronovsky AY; Abbas CA; Dmytruk KV; Ishchuk OP; Kshanovska BV; Sybirna KA; Gaillardin C; Sibirny AA
    Yeast; 2004 Nov; 21(15):1307-16. PubMed ID: 15543522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, characterization and functionality of the orotidine-5'-phosphate decarboxylase gene (URA3) of the glycolipid-producing yeast Candida bombicola.
    Van Bogaert IN; De Maeseneire SL; De Schamphelaire W; Develter D; Soetaert W; Vandamme EJ
    Yeast; 2007 Mar; 24(3):201-8. PubMed ID: 17351910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic polymorphism in the population of Candida glabrata: gene copy-number variation and chromosomal translocations.
    Muller H; Thierry A; Coppée JY; Gouyette C; Hennequin C; Sismeiro O; Talla E; Dujon B; Fairhead C
    Fungal Genet Biol; 2009 Mar; 46(3):264-76. PubMed ID: 19084610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target validation and ligand development for a pathogenic fungal profilin, using a knock-down strain of pathogenic yeast Candida glabrata and structure-based ligand design.
    Ueno K; Tamura Y; Chibana H
    Yeast; 2010 Jul; 27(7):369-78. PubMed ID: 20148388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A TRP1-marker-based system for gene complementation, overexpression, reporter gene expression and gene modification in Candida glabrata.
    Sprenger M; Brunke S; Hube B; Kasper L
    FEMS Yeast Res; 2021 Jan; 20(8):. PubMed ID: 33289831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alport syndrome. Molecular genetic aspects.
    Hertz JM
    Dan Med Bull; 2009 Aug; 56(3):105-52. PubMed ID: 19728970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.