BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19553013)

  • 1. Effect of ultrasound on removal of persistent organic pollutants (POPs) from different types of soils.
    Shrestha RA; Pham TD; Sillanpää M
    J Hazard Mater; 2009 Oct; 170(2-3):871-5. PubMed ID: 19553013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of soil chemical properties on the remediation of phenanthrene-contaminated soil by electrokinetic-Fenton process.
    Kim JH; Han SJ; Kim SS; Yang JW
    Chemosphere; 2006 Jun; 63(10):1667-76. PubMed ID: 16310828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of quicklime mixing for the remediation of petroleum contaminated soils.
    Schifano V; Macleod C; Hadlow N; Dudeney R
    J Hazard Mater; 2007 Mar; 141(2):395-409. PubMed ID: 16843595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process.
    Wang JY; Huang XJ; Kao JC; Stabnikova O
    J Hazard Mater; 2007 Jun; 144(1-2):292-9. PubMed ID: 17110023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil.
    Ottosen LM; Lepkova K; Kubal M
    J Hazard Mater; 2006 Sep; 137(1):113-20. PubMed ID: 16533561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil.
    Niqui-Arroyo JL; Bueno-Montes M; Posada-Baquero R; Ortega-Calvo JJ
    Environ Pollut; 2006 Jul; 142(2):326-32. PubMed ID: 16338043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil.
    Saichek RE; Reddy KR
    Chemosphere; 2003 Apr; 51(4):273-87. PubMed ID: 12604079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave remediation of soil contaminated with hexachlorobenzene.
    Yuan S; Tian M; Lu X
    J Hazard Mater; 2006 Sep; 137(2):878-85. PubMed ID: 16901632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of aging on the extractability of naphthalene and phenanthrene from Mediterranean soils.
    Ncibi MC; Mahjoub B; Gourdon R
    J Hazard Mater; 2007 Jul; 146(1-2):378-84. PubMed ID: 17241741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils.
    Conte P; Agretto A; Spaccini R; Piccolo A
    Environ Pollut; 2005 Jun; 135(3):515-22. PubMed ID: 15749548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcosm studies on the air-soil exchange of hexachlorobenzene and polychlorinated biphenyls.
    Kurt-Karakus P; Jones KC
    J Environ Monit; 2006 Dec; 8(12):1227-34. PubMed ID: 17133279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation efficiency of vapour extraction of sandy soils contaminated with cyclohexane: Influence of air flow rate, water and natural organic matter content.
    Albergaria JT; da Conceição M Alvim-Ferraz M; Delerue-Matos C
    Environ Pollut; 2006 Sep; 143(1):146-52. PubMed ID: 16368176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil.
    O'Mahony MM; Dobson AD; Barnes JD; Singleton I
    Chemosphere; 2006 Apr; 63(2):307-14. PubMed ID: 16153687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different extraction agents on metal and organic contaminant removal from a field soil.
    Khodadoust AP; Reddy KR; Maturi K
    J Hazard Mater; 2005 Jan; 117(1):15-24. PubMed ID: 15621349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical implications of pyrene and phenanthrene sorptive phenomena: effects of sorbent and solute properties.
    Hwang S; Cutright TJ
    Arch Environ Contam Toxicol; 2003 Feb; 44(2):152-9. PubMed ID: 12520387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil.
    Labud V; Garcia C; Hernandez T
    Chemosphere; 2007 Jan; 66(10):1863-71. PubMed ID: 17083964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes.
    Barber JL; Sweetman AJ; van Wijk D; Jones KC
    Sci Total Environ; 2005 Oct; 349(1-3):1-44. PubMed ID: 16005495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent sorption of norflurazon in four different soils: use of beta-cyclodextrin solutions for remediation of pesticide-contaminated soils.
    Villaverde J
    J Hazard Mater; 2007 Apr; 142(1-2):184-90. PubMed ID: 16973265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic movement of hexachlorobenzene in clayed soils enhanced by Tween 80 and beta-cyclodextrin.
    Yuan S; Tian M; Lu X
    J Hazard Mater; 2006 Sep; 137(2):1218-25. PubMed ID: 16713081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land.
    Kay P; Blackwell PA; Boxall AB
    Chemosphere; 2005 Jul; 60(4):497-507. PubMed ID: 15950042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.