These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 19553013)

  • 21. The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils.
    Liu Z; He Y; Xu J; Huang P; Jilani G
    Environ Pollut; 2008 Mar; 152(1):163-71. PubMed ID: 17601643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant.
    Song S; Zhu L; Zhou W
    Environ Pollut; 2008 Dec; 156(3):1368-70. PubMed ID: 18656292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of different extraction agents on metal and organic contaminant removal from a field soil.
    Khodadoust AP; Reddy KR; Maturi K
    J Hazard Mater; 2005 Jan; 117(1):15-24. PubMed ID: 15621349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced washing of HCB contaminated soils by methyl-beta-cyclodextrin combined with ethanol.
    Wan J; Yuan S; Mak K; Chen J; Li T; Lin L; Lu X
    Chemosphere; 2009 May; 75(6):759-64. PubMed ID: 19217639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Partitioning of hexachlorobenzene in a kaolin/humic acid/surfactant/water system: combined effect of surfactant and soil organic matter.
    Wan J; Wang L; Lu X; Lin Y; Zhang S
    J Hazard Mater; 2011 Nov; 196():79-85. PubMed ID: 21943921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Statistical implications of pyrene and phenanthrene sorptive phenomena: effects of sorbent and solute properties.
    Hwang S; Cutright TJ
    Arch Environ Contam Toxicol; 2003 Feb; 44(2):152-9. PubMed ID: 12520387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transient behavior of heavy metals in soils during electrokinetic remediation.
    Al-Hamdan AZ; Reddy KR
    Chemosphere; 2008 Mar; 71(5):860-71. PubMed ID: 18155269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil.
    Labud V; Garcia C; Hernandez T
    Chemosphere; 2007 Jan; 66(10):1863-71. PubMed ID: 17083964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hexachlorobenzene in the global environment: emissions, levels, distribution, trends and processes.
    Barber JL; Sweetman AJ; van Wijk D; Jones KC
    Sci Total Environ; 2005 Oct; 349(1-3):1-44. PubMed ID: 16005495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-dependent sorption of norflurazon in four different soils: use of beta-cyclodextrin solutions for remediation of pesticide-contaminated soils.
    Villaverde J
    J Hazard Mater; 2007 Apr; 142(1-2):184-90. PubMed ID: 16973265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Desorption characteristics of kaolin clay contaminated with zinc from electrokinetic soil processing.
    Lee MH; Kamon M; Kim SS; Lee JY; Chung HI
    Environ Geochem Health; 2007 Aug; 29(4):281-8. PubMed ID: 17530420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrokinetic movement of hexachlorobenzene in clayed soils enhanced by Tween 80 and beta-cyclodextrin.
    Yuan S; Tian M; Lu X
    J Hazard Mater; 2006 Sep; 137(2):1218-25. PubMed ID: 16713081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of hexachlorobenzene from soil by electrokinetically enhanced chemical oxidation.
    Oonnittan A; Shrestha RA; Sillanpää M
    J Hazard Mater; 2009 Mar; 162(2-3):989-93. PubMed ID: 18614285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land.
    Kay P; Blackwell PA; Boxall AB
    Chemosphere; 2005 Jul; 60(4):497-507. PubMed ID: 15950042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatially resolved distribution models of POP concentrations in soil: a stochastic approach using regression trees.
    Kubosová K; Komprda J; Jarkovský J; Sánka M; Hájek O; Dusek L; Holoubek I; Klánová J
    Environ Sci Technol; 2009 Dec; 43(24):9230-6. PubMed ID: 20000514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of phenanthrene catabolism in natural and artificial soils.
    Rhodes AH; Hofman J; Semple KT
    Environ Pollut; 2008 Mar; 152(2):424-30. PubMed ID: 17881102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soil remediation time to achieve clean-up goals I: Influence of soil water content.
    Alvim-Ferraz Mda C; Albergaria JT; Delerue-Matos C
    Chemosphere; 2006 Feb; 62(5):853-60. PubMed ID: 15967477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trace elements, pH and organic matter evolution in contaminated soils under assisted natural remediation: a 4-year field study.
    Madejón E; Madejón P; Burgos P; Pérez de Mora A; Cabrera F
    J Hazard Mater; 2009 Mar; 162(2-3):931-8. PubMed ID: 18602216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of impacts of soil fractions on phenanthrene sorption.
    Luo L; Zhang S; Ma Y
    Chemosphere; 2008 Jun; 72(6):891-6. PubMed ID: 18472137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The operation characteristics and electrochemical reactions of a specific circulation-enhanced electrokinetics.
    Chang JH; Cheng SF
    J Hazard Mater; 2007 Mar; 141(1):168-75. PubMed ID: 16887266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.