These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 19553672)

  • 1. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm.
    Martens EC; Koropatkin NM; Smith TJ; Gordon JI
    J Biol Chem; 2009 Sep; 284(37):24673-7. PubMed ID: 19553672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla.
    Mahowald MA; Rey FE; Seedorf H; Turnbaugh PJ; Fulton RS; Wollam A; Shah N; Wang C; Magrini V; Wilson RK; Cantarel BL; Coutinho PM; Henrissat B; Crock LW; Russell A; Verberkmoes NC; Hettich RL; Gordon JI
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5859-64. PubMed ID: 19321416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes.
    Foley MH; Cockburn DW; Koropatkin NM
    Cell Mol Life Sci; 2016 Jul; 73(14):2603-17. PubMed ID: 27137179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.
    Martens EC; Lowe EC; Chiang H; Pudlo NA; Wu M; McNulty NP; Abbott DW; Henrissat B; Gilbert HJ; Bolam DN; Gordon JI
    PLoS Biol; 2011 Dec; 9(12):e1001221. PubMed ID: 22205877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis.
    Cameron EA; Kwiatkowski KJ; Lee BH; Hamaker BR; Koropatkin NM; Martens EC
    mBio; 2014 Sep; 5(5):e01441-14. PubMed ID: 25205092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility.
    Larsbrink J; McKee LS
    Adv Appl Microbiol; 2020; 110():63-98. PubMed ID: 32386606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut
    Déjean G; Tauzin AS; Bennett SW; Creagh AL; Brumer H
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31420336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont.
    Martens EC; Roth R; Heuser JE; Gordon JI
    J Biol Chem; 2009 Jul; 284(27):18445-57. PubMed ID: 19403529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.
    Pudlo NA; Urs K; Kumar SS; German JB; Mills DA; Martens EC
    mBio; 2015 Nov; 6(6):e01282-15. PubMed ID: 26556271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PUL-Mediated Plant Cell Wall Polysaccharide Utilization in the Gut Bacteroidetes.
    Hao Z; Wang X; Yang H; Tu T; Zhang J; Luo H; Huang H; Su X
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts.
    Karunatilaka KS; Cameron EA; Martens EC; Koropatkin NM; Biteen JS
    mBio; 2014 Nov; 5(6):e02172. PubMed ID: 25389179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteroidetes use thousands of enzyme combinations to break down glycans.
    Lapébie P; Lombard V; Drula E; Terrapon N; Henrissat B
    Nat Commun; 2019 May; 10(1):2043. PubMed ID: 31053724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging.
    Turroni F; Bottacini F; Foroni E; Mulder I; Kim JH; Zomer A; Sánchez B; Bidossi A; Ferrarini A; Giubellini V; Delledonne M; Henrissat B; Coutinho P; Oggioni M; Fitzgerald GF; Mills D; Margolles A; Kelly D; van Sinderen D; Ventura M
    Proc Natl Acad Sci U S A; 2010 Nov; 107(45):19514-9. PubMed ID: 20974960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivable, Host-Specific
    Vera-Ponce de León A; Jahnes BC; Duan J; Camuy-Vélez LA; Sabree ZL
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A refined palate: bacterial consumption of host glycans in the gut.
    Marcobal A; Southwick AM; Earle KA; Sonnenburg JL
    Glycobiology; 2013 Sep; 23(9):1038-46. PubMed ID: 23720460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host glycan utilization within the Bacteroidetes Sus-like paradigm.
    Brown HA; Koropatkin NM
    Glycobiology; 2021 Jun; 31(6):697-706. PubMed ID: 32518945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemistry of complex glycan depolymerisation by the human gut microbiota.
    Ndeh D; Gilbert HJ
    FEMS Microbiol Rev; 2018 Mar; 42(2):146-164. PubMed ID: 29325042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycan recognition by the Bacteroidetes Sus-like systems.
    Bolam DN; Koropatkin NM
    Curr Opin Struct Biol; 2012 Oct; 22(5):563-9. PubMed ID: 22819666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylum-wide general protein O-glycosylation system of the Bacteroidetes.
    Coyne MJ; Fletcher CM; Chatzidaki-Livanis M; Posch G; Schaffer C; Comstock LE
    Mol Microbiol; 2013 May; 88(4):772-83. PubMed ID: 23551589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes.
    Dodd D; Mackie RI; Cann IK
    Mol Microbiol; 2011 Jan; 79(2):292-304. PubMed ID: 21219452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.