These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
844 related articles for article (PubMed ID: 19554036)
1. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. Kyselková M; Kopecký J; Frapolli M; Défago G; Ságová-Marecková M; Grundmann GL; Moënne-Loccoz Y ISME J; 2009 Oct; 3(10):1127-38. PubMed ID: 19554036 [TBL] [Abstract][Full Text] [Related]
2. Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. Ramette A; Moënne-Loccoz Y; Défago G FEMS Microbiol Ecol; 2006 Mar; 55(3):369-81. PubMed ID: 16466376 [TBL] [Abstract][Full Text] [Related]
3. Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco. Almario J; Muller D; Défago G; Moënne-Loccoz Y Environ Microbiol; 2014 Jul; 16(7):1949-60. PubMed ID: 24650207 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers' fields. Kyselková M; Almario J; Kopecký J; Ságová-Marečková M; Haurat J; Muller D; Grundmann GL; Moënne-Loccoz Y Environ Microbiol Rep; 2014 Aug; 6(4):346-53. PubMed ID: 24992533 [TBL] [Abstract][Full Text] [Related]
6. A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils. Frapolli M; Moënne-Loccoz Y; Meyer J; Défago G FEMS Microbiol Ecol; 2008 Jun; 64(3):468-81. PubMed ID: 18393988 [TBL] [Abstract][Full Text] [Related]
7. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Aravind R; Kumar A; Eapen SJ; Ramana KV Lett Appl Microbiol; 2009 Jan; 48(1):58-64. PubMed ID: 19018963 [TBL] [Abstract][Full Text] [Related]
8. Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. Ramette A; Moënne-Loccoz Y; Défago G FEMS Microbiol Ecol; 2003 May; 44(1):35-43. PubMed ID: 19719649 [TBL] [Abstract][Full Text] [Related]
9. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. Scheid D; Stubner S; Conrad R FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368 [TBL] [Abstract][Full Text] [Related]
10. Transgenic tobacco revealing altered bacterial diversity in the rhizosphere during early plant development. Andreote FD; Mendes R; Dini-Andreote F; Rossetto PB; Labate CA; Pizzirani-Kleiner AA; van Elsas JD; Azevedo JL; Araújo WL Antonie Van Leeuwenhoek; 2008 May; 93(4):415-24. PubMed ID: 18181027 [TBL] [Abstract][Full Text] [Related]
11. [Microbial distribution and 16S rRNA diversity in the rhizosphere soil of Panax notoginseng]. Wei Sheng Wu Xue Bao; 2015 Feb; 55(2):205-13. PubMed ID: 25958701 [TBL] [Abstract][Full Text] [Related]
12. Bacterial diversity in the rhizosphere of Proteaceae species. Stafford WH; Baker GC; Brown SA; Burton SG; Cowan DA Environ Microbiol; 2005 Nov; 7(11):1755-68. PubMed ID: 16232290 [TBL] [Abstract][Full Text] [Related]
13. Microbial diversity of culturable heterotrophs in the rhizosphere of salt marsh grass, Porteresia coarctata (Tateoka) in a mangrove ecosystem. Bharathkumar S; Paul D; Nair S J Basic Microbiol; 2008 Feb; 48(1):10-5. PubMed ID: 18247389 [TBL] [Abstract][Full Text] [Related]
14. Changes in land use alter the structure of bacterial communities in Western Amazon soils. da C Jesus E; Marsh TL; Tiedje JM; de S Moreira FM ISME J; 2009 Sep; 3(9):1004-11. PubMed ID: 19440233 [TBL] [Abstract][Full Text] [Related]
15. Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. d'Angelo-Picard C; Faure D; Penot I; Dessaux Y Environ Microbiol; 2005 Nov; 7(11):1796-808. PubMed ID: 16232294 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. Park MS; Jung SR; Lee MS; Kim KO; Do JO; Lee KH; Kim SB; Bae KS J Microbiol; 2005 Jun; 43(3):219-27. PubMed ID: 15995638 [TBL] [Abstract][Full Text] [Related]
17. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Talia P; Sede SM; Campos E; Rorig M; Principi D; Tosto D; Hopp HE; Grasso D; Cataldi A Res Microbiol; 2012 Apr; 163(3):221-32. PubMed ID: 22202170 [TBL] [Abstract][Full Text] [Related]
18. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. Rosenberg K; Bertaux J; Krome K; Hartmann A; Scheu S; Bonkowski M ISME J; 2009 Jun; 3(6):675-84. PubMed ID: 19242534 [TBL] [Abstract][Full Text] [Related]
19. Molecular diversity of Frankia in root nodules of Alnus incana grown with inoculum from polluted urban soils. Ridgway KP; Marland LA; Harrison AF; Wright J; Young JP; Fitter AH FEMS Microbiol Ecol; 2004 Nov; 50(3):255-63. PubMed ID: 19712365 [TBL] [Abstract][Full Text] [Related]
20. Is diversification history of maize influencing selection of soil bacteria by roots? Bouffaud ML; Kyselková M; Gouesnard B; Grundmann G; Muller D; Moënne-Loccoz Y Mol Ecol; 2012 Jan; 21(1):195-206. PubMed ID: 22126532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]