These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 19554039)
61. Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway. Auger B; Pouvreau JB; Pouponneau K; Yoneyama K; Montiel G; Le Bizec B; Yoneyama K; Delavault P; Delourme R; Simier P Mol Plant Microbe Interact; 2012 Jul; 25(7):993-1004. PubMed ID: 22414435 [TBL] [Abstract][Full Text] [Related]
62. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Tan Y; Cui Y; Li H; Kuang A; Li X; Wei Y; Ji X Microbiol Res; 2017 Jan; 194():10-19. PubMed ID: 27938858 [TBL] [Abstract][Full Text] [Related]
63. Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance. Hein JW; Wolfe GV; Blee KA Microb Ecol; 2008 Feb; 55(2):333-43. PubMed ID: 17619212 [TBL] [Abstract][Full Text] [Related]
64. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Yuan J; Zhao J; Wen T; Zhao M; Li R; Goossens P; Huang Q; Bai Y; Vivanco JM; Kowalchuk GA; Berendsen RL; Shen Q Microbiome; 2018 Sep; 6(1):156. PubMed ID: 30208962 [TBL] [Abstract][Full Text] [Related]
66. Microbial Community Changes in the Rhizosphere Soil of Healthy and Rusty Wei X; Wang X; Cao P; Gao Z; Chen AJ; Han J Biomed Res Int; 2020; 2020():8018525. PubMed ID: 32016120 [No Abstract] [Full Text] [Related]
67. Transcriptional activation and production of tryptophan-derived secondary metabolites in arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. Iven T; König S; Singh S; Braus-Stromeyer SA; Bischoff M; Tietze LF; Braus GH; Lipka V; Feussner I; Dröge-Laser W Mol Plant; 2012 Nov; 5(6):1389-402. PubMed ID: 22522512 [TBL] [Abstract][Full Text] [Related]
69. An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Mondy S; Lenglet A; Beury-Cirou A; Libanga C; Ratet P; Faure D; Dessaux Y Mol Ecol; 2014 Oct; 23(19):4846-61. PubMed ID: 25145455 [TBL] [Abstract][Full Text] [Related]
70. Temporal dynamics of microbial communities in the rhizosphere of two genetically modified (GM) maize hybrids in tropical agrosystems. Cotta SR; Dias AC; Marriel IE; Gomes EA; van Elsas JD; Seldin L Antonie Van Leeuwenhoek; 2013 Mar; 103(3):589-601. PubMed ID: 23124960 [TBL] [Abstract][Full Text] [Related]
71. Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Ledger T; Zúñiga A; Kraiser T; Dasencich P; Donoso R; Pérez-Pantoja D; González B Antonie Van Leeuwenhoek; 2012 May; 101(4):713-23. PubMed ID: 22186997 [TBL] [Abstract][Full Text] [Related]
72. Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Singer E; Bonnette J; Kenaley SC; Woyke T; Juenger TE Environ Microbiol Rep; 2019 Apr; 11(2):185-195. PubMed ID: 30537406 [TBL] [Abstract][Full Text] [Related]
73. Comparison of bacterial rhizosphere communities from plant microbial fuel cells with different current production by 454 amplicon sequencing. Rothballer M; Engel M; Strik DP; Timmers R; Schloter M; Hartmann A Commun Agric Appl Biol Sci; 2011; 76(2):31-2. PubMed ID: 21404929 [No Abstract] [Full Text] [Related]
74. Stable Isotope Probing of Microbiota Structure and Function in the Plant Rhizosphere. Achouak W; Haichar FEZ Methods Mol Biol; 2019; 2046():233-243. PubMed ID: 31407309 [TBL] [Abstract][Full Text] [Related]
75. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. Tan Y; Cui Y; Li H; Kuang A; Li X; Wei Y; Ji X J Basic Microbiol; 2017 Apr; 57(4):337-344. PubMed ID: 28060404 [TBL] [Abstract][Full Text] [Related]
76. Genetic and functional diversities of bacterial communities in the rhizosphere of Arachis hypogaea. Haldar S; Choudhury SR; Sengupta S Antonie Van Leeuwenhoek; 2011 Jun; 100(1):161-70. PubMed ID: 21380504 [TBL] [Abstract][Full Text] [Related]
77. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. Micallef SA; Shiaris MP; Colón-Carmona A J Exp Bot; 2009; 60(6):1729-42. PubMed ID: 19342429 [TBL] [Abstract][Full Text] [Related]
78. Microbiome Diversity in Cotton Rhizosphere Under Normal and Drought Conditions. Ullah A; Akbar A; Luo Q; Khan AH; Manghwar H; Shaban M; Yang X Microb Ecol; 2019 Feb; 77(2):429-439. PubMed ID: 30196314 [TBL] [Abstract][Full Text] [Related]
79. Verticillium suppression is associated with the glucosinolate composition of Arabidopsis thaliana leaves. Witzel K; Hanschen FS; Schreiner M; Krumbein A; Ruppel S; Grosch R PLoS One; 2013; 8(9):e71877. PubMed ID: 24039726 [TBL] [Abstract][Full Text] [Related]
80. Differential impacts of brassicaceous and nonbrassicaceous oilseed meals on soil bacterial and fungal communities. Hollister EB; Hu P; Wang AS; Hons FM; Gentry TJ FEMS Microbiol Ecol; 2013 Mar; 83(3):632-41. PubMed ID: 23025785 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]