BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19555160)

  • 1. Transport molecules using reverse sequence HIV-Tat polypeptides: not just any old Tat? (WO200808225).
    Howl J; Jones S
    Expert Opin Ther Pat; 2009 Sep; 19(9):1329-33. PubMed ID: 19555160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular transduction using cell-penetrating peptides.
    Sawant R; Torchilin V
    Mol Biosyst; 2010 Apr; 6(4):628-40. PubMed ID: 20237640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence.
    Ziegler A; Nervi P; Dürrenberger M; Seelig J
    Biochemistry; 2005 Jan; 44(1):138-48. PubMed ID: 15628854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular cargo delivery using tat peptide and derivatives.
    Zhao M; Weissleder R
    Med Res Rev; 2004 Jan; 24(1):1-12. PubMed ID: 14595670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer.
    Wadia JS; Dowdy SF
    Adv Drug Deliv Rev; 2005 Feb; 57(4):579-96. PubMed ID: 15722165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides.
    Gupta B; Levchenko TS; Torchilin VP
    Adv Drug Deliv Rev; 2005 Feb; 57(4):637-51. PubMed ID: 15722168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The many futures for cell-penetrating peptides: how soon is now?
    Howl J; Nicholl ID; Jones S
    Biochem Soc Trans; 2007 Aug; 35(Pt 4):767-9. PubMed ID: 17635144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The augmentation of intracellular delivery of peptide therapeutics by artificial protein transduction domains.
    Yoshikawa T; Sugita T; Mukai Y; Abe Y; Nakagawa S; Kamada H; Tsunoda S; Tsutsumi Y
    Biomaterials; 2009 Jul; 30(19):3318-23. PubMed ID: 19304319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms.
    Futaki S
    Biopolymers; 2006; 84(3):241-9. PubMed ID: 16333858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5.
    Goda N; Tenno T; Inomata K; Shirakawa M; Tanaka T; Hiroaki H
    Exp Cell Res; 2008 Aug; 314(13):2352-61. PubMed ID: 18602100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering, cloning, and functional characterization of recombinant LIM mineralization protein-1 containing an N-terminal HIV-derived membrane transduction domain.
    Sangadala S; Okada M; Liu Y; Viggeswarapu M; Titus L; Boden SD
    Protein Expr Purif; 2009 Jun; 65(2):165-73. PubMed ID: 19284982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake.
    Subrizi A; Tuominen E; Bunker A; Róg T; Antopolsky M; Urtti A
    J Control Release; 2012 Mar; 158(2):277-85. PubMed ID: 22100438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane permeability commonly shared among arginine-rich peptides.
    Futaki S; Goto S; Sugiura Y
    J Mol Recognit; 2003; 16(5):260-4. PubMed ID: 14523938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein/peptide transduction domains: potential to deliver large DNA molecules into cells.
    Snyder EL; Dowdy SF
    Curr Opin Mol Ther; 2001 Apr; 3(2):147-52. PubMed ID: 11338927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of novel cell-penetrating peptides from a random peptide library using in vitro virus and their modifications.
    Kamide K; Nakakubo H; Uno S; Fukamizu A
    Int J Mol Med; 2010 Jan; 25(1):41-51. PubMed ID: 19956900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus.
    Yoshikawa T; Sugita T; Mukai Y; Yamanada N; Nagano K; Nabeshi H; Yoshioka Y; Nakagawa S; Abe Y; Kamada H; Tsunoda S; Tsutsumi Y
    J Mol Biol; 2008 Jul; 380(5):777-82. PubMed ID: 18571668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular uptake and lysosomal delivery of galactocerebrosidase tagged with the HIV Tat protein transduction domain.
    Zhang XY; Dinh A; Cronin J; Li SC; Reiser J
    J Neurochem; 2008 Feb; 104(4):1055-64. PubMed ID: 17986221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular uptake [correction of utake] of the Tat peptide: an endocytosis mechanism following ionic interactions.
    Vives E
    J Mol Recognit; 2003; 16(5):265-71. PubMed ID: 14523939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides.
    Duchardt F; Fotin-Mleczek M; Schwarz H; Fischer R; Brock R
    Traffic; 2007 Jul; 8(7):848-66. PubMed ID: 17587406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of cell penetrating peptides (CPPs).
    Kerkis A; Hayashi MA; Yamane T; Kerkis I
    IUBMB Life; 2006 Jan; 58(1):7-13. PubMed ID: 16540427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.