These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. Broderick NA; Robinson CJ; McMahon MD; Holt J; Handelsman J; Raffa KF BMC Biol; 2009 Mar; 7():11. PubMed ID: 19261175 [TBL] [Abstract][Full Text] [Related]
43. Cadherin gene expression and effects of Bt resistance on sperm transfer in pink bollworm. Carrière Y; Showalter AM; Fabrick JA; Sollome J; Ellers-Kirk C; Tabashnik BE J Insect Physiol; 2009 Nov; 55(11):1058-64. PubMed ID: 19666026 [TBL] [Abstract][Full Text] [Related]
44. Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L. Mohan M; Sushil SN; Selvakumar G; Bhatt JC; Gujar GT; Gupta HS Pest Manag Sci; 2009 Jan; 65(1):27-33. PubMed ID: 18785222 [TBL] [Abstract][Full Text] [Related]
45. Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Fabrick JA; Tabashnik BE Insect Biochem Mol Biol; 2007 Feb; 37(2):97-106. PubMed ID: 17244539 [TBL] [Abstract][Full Text] [Related]
46. Degradation of the insecticidal toxin produced by Bacillus thuringiensis var. kurstaki by extracellular proteases produced by Chrysosporium sp. Padmaja T; Suneetha N; Sashidhar RB; Sharma HC; Deshpande V; Venkateswerlu G J Appl Microbiol; 2008 Apr; 104(4):1171-81. PubMed ID: 18028364 [TBL] [Abstract][Full Text] [Related]
47. Effects of Bacillus thuringiensis toxin Cry1Ac and cytoplasmic polyhedrosis virus of Helicoverpa armigera (Hübner) (HaCPV) on cotton bollworm (Lepidoptera: Noctuidae). Marzban R; He Q; Liu X; Zhang Q J Invertebr Pathol; 2009 Apr; 101(1):71-6. PubMed ID: 19269293 [TBL] [Abstract][Full Text] [Related]
48. Tritrophic choice experiments with bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Schuler TH; Potting RP; Denholm I; Clark SJ; Clark AJ; Stewart CN; Poppy GM Transgenic Res; 2003 Jun; 12(3):351-61. PubMed ID: 12779123 [TBL] [Abstract][Full Text] [Related]
49. Regulation by gut bacteria of immune response, Bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella. Orozco-Flores AA; Valadez-Lira JA; Oppert B; Gomez-Flores R; Tamez-Guerra R; Rodríguez-Padilla C; Tamez-Guerra P J Insect Physiol; 2017 Apr; 98():275-283. PubMed ID: 28167070 [TBL] [Abstract][Full Text] [Related]
50. Differential activity and activation of Bacillus thuringiensis insecticidal proteins in diamondback moth, Plutella xylostella. Monnerat R; Masson L; Brousseau R; Pusztai-Carey M; Bordat D; Frutos R Curr Microbiol; 1999 Sep; 39(3):159-62. PubMed ID: 10441730 [TBL] [Abstract][Full Text] [Related]
51. Competition and reproduction in mixed infections of pathogenic and non-pathogenic Bacillus spp. Raymond B; Davis D; Bonsall MB J Invertebr Pathol; 2007 Oct; 96(2):151-5. PubMed ID: 17467004 [TBL] [Abstract][Full Text] [Related]
52. Bacillus thuringiensis protein transfer between rootstock and scion of grafted poplar. Wang L; Yang M; Akinnagbe A; Liang H; Wang J; Ewald D Plant Biol (Stuttg); 2012 Sep; 14(5):745-50. PubMed ID: 22372666 [TBL] [Abstract][Full Text] [Related]
53. Cultivable gut bacteria of scarabs (Coleoptera: Scarabaeidae) inhibit Bacillus thuringiensis multiplication. Shan Y; Shu C; Crickmore N; Liu C; Xiang W; Song F; Zhang J Environ Entomol; 2014 Jun; 43(3):612-6. PubMed ID: 24780240 [TBL] [Abstract][Full Text] [Related]
54. The requirement for early exposure of Haemonchus contortus larvae to Bacillus thuringiensis for effective inhibition of larval development. O'Grady J; Akhurst RJ; Kotze AC Vet Parasitol; 2007 Nov; 150(1-2):97-103. PubMed ID: 17951006 [TBL] [Abstract][Full Text] [Related]
55. Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). Milne R; Liu Y; Gauthier D; van Frankenhuyzen K J Invertebr Pathol; 2008 Oct; 99(2):166-72. PubMed ID: 18585733 [TBL] [Abstract][Full Text] [Related]
56. Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells. Valaitis AP Insect Biochem Mol Biol; 2008 Jun; 38(6):611-8. PubMed ID: 18510972 [TBL] [Abstract][Full Text] [Related]
57. Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Zago HB; Siqueira HÁ; Pereira EJ; Picanço MC; Barros R Pest Manag Sci; 2014 Mar; 70(3):488-95. PubMed ID: 23813721 [TBL] [Abstract][Full Text] [Related]
58. Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Kotze AC; O'Grady J; Gough JM; Pearson R; Bagnall NH; Kemp DH; Akhurst RJ Int J Parasitol; 2005 Aug; 35(9):1013-22. PubMed ID: 15964574 [TBL] [Abstract][Full Text] [Related]
59. Susceptibility of Agrotis segetum (noctuidae) to Bacillus thuringiensis and analysis of midgut proteinases. Ben Hamadou-Charfi D; Sauer AJ; Abdelkefi-Mesrati L; Tounsi S; Jaoua S; Stephan D Prep Biochem Biotechnol; 2015; 45(5):411-20. PubMed ID: 24839868 [TBL] [Abstract][Full Text] [Related]
60. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Dubovskiy IM; Martemyanov VV; Vorontsova YL; Rantala MJ; Gryzanova EV; Glupov VV Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jul; 148(1):1-5. PubMed ID: 18400562 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]