BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 19555436)

  • 1. Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families.
    Jagadeeswaran G; Zheng Y; Li YF; Shukla LI; Matts J; Hoyt P; Macmil SL; Wiley GB; Roe BA; Zhang W; Sunkar R
    New Phytol; 2009; 184(1):85-98. PubMed ID: 19555436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Six Medicago truncatula Dicer-like protein genes are expressed in plant cells and upregulated in nodules.
    Tworak A; Urbanowicz A; Podkowinski J; Kurzynska-Kokorniak A; Koralewska N; Figlerowicz M
    Plant Cell Rep; 2016 May; 35(5):1043-52. PubMed ID: 26825594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families.
    Szittya G; Moxon S; Santos DM; Jing R; Fevereiro MP; Moulton V; Dalmay T
    BMC Genomics; 2008 Dec; 9():593. PubMed ID: 19068109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. microRNA profiling of root tissues and root forming explant cultures in Medicago truncatula.
    Eyles RP; Williams PH; Ohms SJ; Weiller GF; Ogilvie HA; Djordjevic MA; Imin N
    Planta; 2013 Jul; 238(1):91-105. PubMed ID: 23572382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level.
    Chen L; Wang T; Zhao M; Zhang W
    Plant Sci; 2012 Mar; 184():14-9. PubMed ID: 22284705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal.
    Zhou ZS; Zeng HQ; Liu ZP; Yang ZM
    Plant Cell Environ; 2012 Jan; 35(1):86-99. PubMed ID: 21895696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula.
    Zhou ZS; Huang SQ; Yang ZM
    Biochem Biophys Res Commun; 2008 Sep; 374(3):538-42. PubMed ID: 18662674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula.
    Long RC; Li MN; Kang JM; Zhang TJ; Sun Y; Yang QC
    Physiol Plant; 2015 May; 154(1):13-27. PubMed ID: 25156209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome.
    Formey D; Sallet E; Lelandais-Brière C; Ben C; Bustos-Sanmamed P; Niebel A; Frugier F; Combier JP; Debellé F; Hartmann C; Poulain J; Gavory F; Wincker P; Roux C; Gentzbittel L; Gouzy J; Crespi M
    Genome Biol; 2014 Sep; 15(9):457. PubMed ID: 25248950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of a Glycine max degradome library identify microRNA targets and microRNAs that trigger secondary siRNA biogenesis.
    Hu Z; Jiang Q; Ni Z; Chen R; Xu S; Zhang H
    J Integr Plant Biol; 2013 Feb; 55(2):160-76. PubMed ID: 23131131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches.
    Li YF; Zheng Y; Jagadeeswaran G; Sunkar R
    Plant Sci; 2013 Apr; 203-204():17-24. PubMed ID: 23415324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing.
    Wang T; Chen L; Zhao M; Tian Q; Zhang WH
    BMC Genomics; 2011 Jul; 12():367. PubMed ID: 21762498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification of microRNAs in Medicago truncatula by high-throughput sequencing.
    Wang TZ; Zhang WH
    Methods Mol Biol; 2013; 1069():67-80. PubMed ID: 23996309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extensive Families of miRNAs and PHAS Loci in Norway Spruce Demonstrate the Origins of Complex phasiRNA Networks in Seed Plants.
    Xia R; Xu J; Arikit S; Meyers BC
    Mol Biol Evol; 2015 Nov; 32(11):2905-18. PubMed ID: 26318183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the small RNA component of leaves and fruits from four different cucurbit species.
    Jagadeeswaran G; Nimmakayala P; Zheng Y; Gowdu K; Reddy UK; Sunkar R
    BMC Genomics; 2012 Jul; 13():329. PubMed ID: 22823569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max.
    Zabala G; Campos E; Varala KK; Bloomfield S; Jones SI; Win H; Tuteja JH; Calla B; Clough SJ; Hudson M; Vodkin LO
    BMC Plant Biol; 2012 Oct; 12():177. PubMed ID: 23031057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Medicago truncatula, water deficit modulates the transcript accumulation of components of small RNA pathways.
    Capitão C; Paiva JA; Santos DM; Fevereiro P
    BMC Plant Biol; 2011 May; 11():79. PubMed ID: 21569262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.
    Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD
    PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary siRNAs from Medicago NB-LRRs modulated via miRNA-target interactions and their abundances.
    Fei Q; Li P; Teng C; Meyers BC
    Plant J; 2015 Aug; 83(3):451-65. PubMed ID: 26042408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules.
    Lelandais-Brière C; Naya L; Sallet E; Calenge F; Frugier F; Hartmann C; Gouzy J; Crespi M
    Plant Cell; 2009 Sep; 21(9):2780-96. PubMed ID: 19767456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.