These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 19555436)

  • 21. Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules.
    Hanks JN; Snyder AK; Graham MA; Shah RK; Blaylock LA; Harrison MJ; Shah DM
    Plant Mol Biol; 2005 Jun; 58(3):385-99. PubMed ID: 16021402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational prediction of candidate miRNAs and their targets from Medicago truncatula non-protein-coding transcripts.
    Wen J; Frickey T; Weiller GF
    In Silico Biol; 2008; 8(3-4):291-306. PubMed ID: 19032163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico identification of conserved microRNAs in large number of diverse plant species.
    Sunkar R; Jagadeeswaran G
    BMC Plant Biol; 2008 Apr; 8():37. PubMed ID: 18416839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-Wide Development of MicroRNA-Based SSR Markers in Medicago truncatula with Their Transferability Analysis and Utilization in Related Legume Species.
    Min X; Zhang Z; Liu Y; Wei X; Liu Z; Wang Y; Liu W
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29156589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genotype- and tissue-specific miRNA profiles and their targets in three alfalfa (Medicago sativa L) genotypes.
    Pokoo R; Ren S; Wang Q; Motes CM; Hernandez TD; Ahmadi S; Monteros MJ; Zheng Y; Sunkar R
    BMC Genomics; 2018 Dec; 19(Suppl 10):913. PubMed ID: 30598106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Medicago truncatula Genome: Genomic Data Availability.
    Burks D; Azad R; Wen J; Dickstein R
    Methods Mol Biol; 2018; 1822():39-59. PubMed ID: 30043295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The PIN and LAX families of auxin transport genes in Medicago truncatula.
    Schnabel EL; Frugoli J
    Mol Genet Genomics; 2004 Nov; 272(4):420-32. PubMed ID: 15375694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Medicago truncatula rdr6 allele impairs transgene silencing and endogenous phased siRNA production but not development.
    Bustos-Sanmamed P; Hudik E; Laffont C; Reynes C; Sallet E; Wen J; Mysore KS; Camproux AC; Hartmann C; Gouzy J; Frugier F; Crespi M; Lelandais-Brière C
    Plant Biotechnol J; 2014 Dec; 12(9):1308-18. PubMed ID: 25060922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and characterization of small non-coding RNAs from grape.
    Carra A; Mica E; Gambino G; Pindo M; Moser C; Pè ME; Schubert A
    Plant J; 2009 Sep; 59(5):750-63. PubMed ID: 19453456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum.
    Hao L; Cai P; Jiang N; Wang H; Chen Q
    BMC Genomics; 2010 Jan; 11():55. PubMed ID: 20092619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences.
    Jeyaraj A; Zhang X; Hou Y; Shangguan M; Gajjeraman P; Li Y; Wei C
    BMC Plant Biol; 2017 Nov; 17(1):212. PubMed ID: 29157210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small RNA pathways and diversity in model legumes: lessons from genomics.
    Bustos-Sanmamed P; Bazin J; Hartmann C; Crespi M; Lelandais-Brière C
    Front Plant Sci; 2013; 4():236. PubMed ID: 23847640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.
    Sunkar R; Zhu JK
    Plant Cell; 2004 Aug; 16(8):2001-19. PubMed ID: 15258262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula.
    Reynoso MA; Blanco FA; Bailey-Serres J; Crespi M; Zanetti ME
    Plant J; 2013 Jan; 73(2):289-301. PubMed ID: 23050939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel and Recently Evolved MicroRNA Clusters Regulate Expansive F-BOX Gene Networks through Phased Small Interfering RNAs in Wild Diploid Strawberry.
    Xia R; Ye S; Liu Z; Meyers BC; Liu Z
    Plant Physiol; 2015 Sep; 169(1):594-610. PubMed ID: 26143249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing.
    Chen L; Wang T; Zhao M; Tian Q; Zhang WH
    Planta; 2012 Feb; 235(2):375-86. PubMed ID: 21909758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translating Medicago truncatula genomics to crop legumes.
    Young ND; Udvardi M
    Curr Opin Plant Biol; 2009 Apr; 12(2):193-201. PubMed ID: 19162532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-Wide Identification of microRNAs in Response to Salt/Alkali Stress in
    Cao C; Long R; Zhang T; Kang J; Wang Z; Wang P; Sun H; Yu J; Yang Q
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MicroRNAs and other tiny endogenous RNAs in C. elegans.
    Ambros V; Lee RC; Lavanway A; Williams PT; Jewell D
    Curr Biol; 2003 May; 13(10):807-18. PubMed ID: 12747828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.