These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1242 related articles for article (PubMed ID: 19555750)
1. Nanoparticles for direct nose-to-brain delivery of drugs. Mistry A; Stolnik S; Illum L Int J Pharm; 2009 Sep; 379(1):146-57. PubMed ID: 19555750 [TBL] [Abstract][Full Text] [Related]
2. Is nose-to-brain transport of drugs in man a reality? Illum L J Pharm Pharmacol; 2004 Jan; 56(1):3-17. PubMed ID: 14979996 [TBL] [Abstract][Full Text] [Related]
3. Nanosized Drug Delivery Systems for Direct Nose to Brain Targeting: A Review. Phukan K; Nandy M; Sharma RB; Sharma HK Recent Pat Drug Deliv Formul; 2016; 10(2):156-64. PubMed ID: 26996366 [TBL] [Abstract][Full Text] [Related]
4. Nose-to-brain delivery of tacrine. Jogani VV; Shah PJ; Mishra P; Mishra AK; Misra AR J Pharm Pharmacol; 2007 Sep; 59(9):1199-205. PubMed ID: 17883890 [TBL] [Abstract][Full Text] [Related]
5. Can nasal drug delivery bypass the blood-brain barrier?: questioning the direct transport theory. Merkus FW; van den Berg MP Drugs R D; 2007; 8(3):133-44. PubMed ID: 17472409 [TBL] [Abstract][Full Text] [Related]
6. Insights into direct nose to brain delivery: current status and future perspective. Mittal D; Ali A; Md S; Baboota S; Sahni JK; Ali J Drug Deliv; 2014 Mar; 21(2):75-86. PubMed ID: 24102636 [TBL] [Abstract][Full Text] [Related]
7. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Pardeshi CV; Belgamwar VS Expert Opin Drug Deliv; 2013 Jul; 10(7):957-72. PubMed ID: 23586809 [TBL] [Abstract][Full Text] [Related]
8. Modulation of brain delivery and copulation by intranasal apomorphine hydrochloride. Lu W; Jiang W; Chen J; Yin M; Wang Z; Jiang X Int J Pharm; 2008 Feb; 349(1-2):196-205. PubMed ID: 17904315 [TBL] [Abstract][Full Text] [Related]
9. Polymeric nanoparticles for the drug delivery to the central nervous system. Tosi G; Costantino L; Ruozi B; Forni F; Vandelli MA Expert Opin Drug Deliv; 2008 Feb; 5(2):155-74. PubMed ID: 18248316 [TBL] [Abstract][Full Text] [Related]
10. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium. Mistry A; Stolnik S; Illum L Mol Pharm; 2015 Aug; 12(8):2755-66. PubMed ID: 25997083 [TBL] [Abstract][Full Text] [Related]
11. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Juillerat-Jeanneret L Drug Discov Today; 2008 Dec; 13(23-24):1099-106. PubMed ID: 18848640 [TBL] [Abstract][Full Text] [Related]
12. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. Mistry A; Glud SZ; Kjems J; Randel J; Howard KA; Stolnik S; Illum L J Drug Target; 2009 Aug; 17(7):543-52. PubMed ID: 19530905 [TBL] [Abstract][Full Text] [Related]
13. Micro- and nanoparticles--medical applications. Jătariu A; Peptu C; Popa M; Indrei A Rev Med Chir Soc Med Nat Iasi; 2009; 113(4):1160-9. PubMed ID: 20191893 [TBL] [Abstract][Full Text] [Related]
14. Direct transport of VEGF from the nasal cavity to brain. Yang JP; Liu HJ; Cheng SM; Wang ZL; Cheng X; Yu HX; Liu XF Neurosci Lett; 2009 Jan; 449(2):108-11. PubMed ID: 18996442 [TBL] [Abstract][Full Text] [Related]
15. Nanobiotechnology-based drug delivery to the central nervous system. Jain KK Neurodegener Dis; 2007; 4(4):287-91. PubMed ID: 17627131 [TBL] [Abstract][Full Text] [Related]
16. Targeting the brain--surmounting or bypassing the blood-brain barrier. Potschka H Handb Exp Pharmacol; 2010; (197):411-31. PubMed ID: 20217538 [TBL] [Abstract][Full Text] [Related]
17. Chapter 3 - Colloidal systems for CNS drug delivery. Costantino L; Tosi G; Ruozi B; Bondioli L; Vandelli MA; Forni F Prog Brain Res; 2009; 180():35-69. PubMed ID: 20302828 [TBL] [Abstract][Full Text] [Related]
18. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. Gao X; Wu B; Zhang Q; Chen J; Zhu J; Zhang W; Rong Z; Chen H; Jiang X J Control Release; 2007 Aug; 121(3):156-67. PubMed ID: 17628165 [TBL] [Abstract][Full Text] [Related]
19. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Thorne RG; Pronk GJ; Padmanabhan V; Frey WH Neuroscience; 2004; 127(2):481-96. PubMed ID: 15262337 [TBL] [Abstract][Full Text] [Related]
20. Mathematical Modeling and Simulation to Investigate the CNS Transport Characteristics of Nanoemulsion-Based Drug Delivery Following Intranasal Administration. Kadakia E; Bottino D; Amiji M Pharm Res; 2019 Mar; 36(5):75. PubMed ID: 30923914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]