These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 19555751)
1. Enhancement of gene transfection into human dendritic cells using cationic PLGA nanospheres with a synthesized nuclear localization signal. Kanazawa T; Takashima Y; Murakoshi M; Nakai Y; Okada H Int J Pharm; 2009 Sep; 379(1):187-95. PubMed ID: 19555751 [TBL] [Abstract][Full Text] [Related]
2. Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. Takashima Y; Saito R; Nakajima A; Oda M; Kimura A; Kanazawa T; Okada H Int J Pharm; 2007 Oct; 343(1-2):262-9. PubMed ID: 17628365 [TBL] [Abstract][Full Text] [Related]
3. Poly(L-lactide-co-glycolide) nanospheres conjugated with a nuclear localization signal for delivery of plasmid DNA. Jeon O; Lim HW; Lee M; Song SJ; Kim BS J Drug Target; 2007 Apr; 15(3):190-8. PubMed ID: 17454356 [TBL] [Abstract][Full Text] [Related]
4. Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human monocyte-derived dendritic cells. Moffatt S; Cristiano RJ Int J Pharm; 2006 Sep; 321(1-2):143-54. PubMed ID: 16860501 [TBL] [Abstract][Full Text] [Related]
5. An NLS peptide covalently linked to linear DNA does not enhance transfection efficiency of cationic polymer based gene delivery systems. van der Aa MA; Koning GA; d'Oliveira C; Oosting RS; Wilschut KJ; Hennink WE; Crommelin DJ J Gene Med; 2005 Feb; 7(2):208-17. PubMed ID: 15508141 [TBL] [Abstract][Full Text] [Related]
6. Sustained GM-CSF and PEI condensed pDNA presentation increases the level and duration of gene expression in dendritic cells. Ali OA; Mooney DJ J Control Release; 2008 Dec; 132(3):273-8. PubMed ID: 18674579 [TBL] [Abstract][Full Text] [Related]
7. Poly(lactic-co-glycolic acid) nanosphere as a vehicle for gene delivery to human cord blood-derived mesenchymal stem cells: comparison with polyethylenimine. Gwak SJ; Kim BS Biotechnol Lett; 2008 Jul; 30(7):1177-82. PubMed ID: 18317698 [TBL] [Abstract][Full Text] [Related]
8. Interaction of DNA/nuclear protein/polycation and the terplexes for gene delivery. Shen Y; Peng H; Pan S; Feng M; Wen Y; Deng J; Luo X; Wu C Nanotechnology; 2010 Jan; 21(4):045102. PubMed ID: 20009166 [TBL] [Abstract][Full Text] [Related]
9. Cellular uptake mechanisms and intracellular distributions of polysorbate 80-modified poly (D,L-lactide-co-glycolide) nanospheres for gene delivery. Tahara K; Yamamoto H; Kawashima Y Eur J Pharm Biopharm; 2010 Jun; 75(2):218-24. PubMed ID: 20332026 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable nanoparticles modified by branched polyethylenimine for plasmid DNA delivery. Son S; Kim WJ Biomaterials; 2010 Jan; 31(1):133-43. PubMed ID: 19783041 [TBL] [Abstract][Full Text] [Related]
11. High mobility group box 1 protein enhances polyethylenimine mediated gene delivery in vitro. Shen Y; Peng H; Deng J; Wen Y; Luo X; Pan S; Wu C; Feng M Int J Pharm; 2009 Jun; 375(1-2):140-7. PubMed ID: 19442462 [TBL] [Abstract][Full Text] [Related]
12. Microparticle-mediated gene delivery for the enhanced expression of a 19-kDa fragment of merozoite surface protein 1 of Plasmodium falciparum. Liu S; Danquah MK; Forde GM; Ma C; Wang L; Coppel R Biotechnol Prog; 2010; 26(1):257-62. PubMed ID: 19924768 [TBL] [Abstract][Full Text] [Related]
13. Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethylenimine as carriers systems for parental DNA vaccination. Oster CG; Kim N; Grode L; Barbu-Tudoran L; Schaper AK; Kaufmann SH; Kissel T J Control Release; 2005 May; 104(2):359-77. PubMed ID: 15907586 [TBL] [Abstract][Full Text] [Related]
14. Hydrophilized 3D porous scaffold for effective plasmid DNA delivery. Oh SH; Kim TH; Jang SH; Im GI; Lee JH J Biomed Mater Res A; 2011 Jun; 97(4):441-50. PubMed ID: 21484988 [TBL] [Abstract][Full Text] [Related]
15. PEGylated J591 mAb loaded in PLGA-PEG-PLGA tri-block copolymer for targeted delivery: in vitro evaluation in human prostate cancer cells. Moffatt S; Cristiano RJ Int J Pharm; 2006 Jul; 317(1):10-3. PubMed ID: 16713147 [TBL] [Abstract][Full Text] [Related]
16. Preparation of polyethyleneimine incorporated poly(D,L-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery. Katas H; Cevher E; Alpar HO Int J Pharm; 2009 Mar; 369(1-2):144-54. PubMed ID: 19010405 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods. Zhang XQ; Intra J; Salem AK J Microencapsul; 2008 Feb; 25(1):1-12. PubMed ID: 18188727 [TBL] [Abstract][Full Text] [Related]
18. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Kim JH; Park JS; Yang HN; Woo DG; Jeon SY; Do HJ; Lim HY; Kim JM; Park KH Biomaterials; 2011 Jan; 32(1):268-78. PubMed ID: 20875683 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides. Moore NM; Sheppard CL; Sakiyama-Elbert SE Acta Biomater; 2009 Mar; 5(3):854-64. PubMed ID: 18926782 [TBL] [Abstract][Full Text] [Related]
20. Covalent conjugation of polyethyleneimine on biodegradable microparticles for delivery of plasmid DNA vaccines. Kasturi SP; Sachaphibulkij K; Roy K Biomaterials; 2005 Nov; 26(32):6375-85. PubMed ID: 15913771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]