These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
808 related articles for article (PubMed ID: 19555988)
21. Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Ge H; Jensen PD; Batstone DJ Water Res; 2011 Feb; 45(4):1597-606. PubMed ID: 21185054 [TBL] [Abstract][Full Text] [Related]
22. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production. Zheng X; Su Y; Li X; Xiao N; Wang D; Chen Y Environ Sci Technol; 2013 May; 47(9):4262-8. PubMed ID: 23544425 [TBL] [Abstract][Full Text] [Related]
23. Hydrolysis and acidification of waste-activated sludge in the presence of biosurfactant rhamnolipid: effect of pH. Luo K; Ye Q; Yi X; Yang Q; Li XM; Chen HB; Liu X; Zeng GM Appl Microbiol Biotechnol; 2013 Jun; 97(12):5597-604. PubMed ID: 22948955 [TBL] [Abstract][Full Text] [Related]
24. Organic material solubilization of domestic primary sludge in anaerobic digestion at controlled pH. Gomec CY; Speece RE Water Sci Technol; 2003; 48(4):195-8. PubMed ID: 14531440 [TBL] [Abstract][Full Text] [Related]
25. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Zhao J; Wang D; Li X; Yang Q; Chen H; Zhong Y; Zeng G Water Res; 2015 Jul; 78():111-20. PubMed ID: 25935366 [TBL] [Abstract][Full Text] [Related]
26. Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: Effect of temperature. Zhuo G; Yan Y; Tan X; Dai X; Zhou Q J Biotechnol; 2012 May; 159(1-2):27-31. PubMed ID: 22342599 [TBL] [Abstract][Full Text] [Related]
27. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Song YC; Kwon SJ; Woo JH Water Res; 2004 Apr; 38(7):1653-62. PubMed ID: 15026219 [TBL] [Abstract][Full Text] [Related]
28. Fermentation and elutriation of primary sludge: effect of SRT on process performance. Bouzas A; Ribes J; Ferrer J; Seco A Water Res; 2007 Feb; 41(4):747-56. PubMed ID: 17224171 [TBL] [Abstract][Full Text] [Related]
29. Removal of fecal coliforms by thermophilic anaerobic digestion processes. De León C; Jenkins D Water Sci Technol; 2002; 46(10):147-52. PubMed ID: 12479464 [TBL] [Abstract][Full Text] [Related]
30. Co-digestion of domestic kitchen waste and night soil sludge in a full-scale sludge treatment plant. Yoneyama Y; Takeno K Water Sci Technol; 2002; 45(10):281-6. PubMed ID: 12188559 [TBL] [Abstract][Full Text] [Related]
31. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 degrees C). Liu D; Zeng RJ; Angelidaki I Biotechnol Bioeng; 2008 Aug; 100(6):1108-14. PubMed ID: 18553394 [TBL] [Abstract][Full Text] [Related]
32. Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously. Kyazze G; Dinsdale R; Guwy AJ; Hawkes FR; Premier GC; Hawkes DL Biotechnol Bioeng; 2007 Jul; 97(4):759-70. PubMed ID: 17163512 [TBL] [Abstract][Full Text] [Related]
33. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids. Ucisik AS; Henze M Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214 [TBL] [Abstract][Full Text] [Related]
34. Using excess sludge as carbon source for enhanced nitrogen removal and sludge reduction with hydrolysis technology. Gao YQ; Peng YZ; Zhang JY; Wang JL; Ye L Water Sci Technol; 2010; 62(7):1536-43. PubMed ID: 20935370 [TBL] [Abstract][Full Text] [Related]
35. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Liu H; Wang J; Liu X; Fu B; Chen J; Yu HQ Water Res; 2012 Mar; 46(3):799-807. PubMed ID: 22176743 [TBL] [Abstract][Full Text] [Related]
36. Anaerobic co-digestion of food waste and chemically enhanced primary-treated sludge under mesophilic and thermophilic conditions. Obulisamy PK; Chakraborty D; Selvam A; Wong JW Environ Technol; 2016 Dec; 37(24):3200-7. PubMed ID: 27315419 [TBL] [Abstract][Full Text] [Related]
37. Impact of concentration, temperature, and pH on inactivation of Salmonella spp. by volatile fatty acids in anaerobic digestion. Salsali HR; Parker WJ; Sattar SA Can J Microbiol; 2006 Apr; 52(4):279-86. PubMed ID: 16699577 [TBL] [Abstract][Full Text] [Related]
38. Effect of S-TE (solubilization by thermophilic enzyme) digestion conditions on hydrogen production from waste sludge. Guo L; Zhao J; She Z; Lu M; Zong Y Bioresour Technol; 2012 Aug; 117():368-72. PubMed ID: 22608939 [TBL] [Abstract][Full Text] [Related]
39. Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion. Hasegawa S; Shiota N; Katsura K; Akashi A Water Sci Technol; 2000; 41(3):163-9. PubMed ID: 11381987 [TBL] [Abstract][Full Text] [Related]
40. Enhanced hydrolysis and acidification of waste activated sludge by biosurfactant rhamnolipid. Yi X; Luo K; Yang Q; Li XM; Deng WG; Cheng HB; Wang ZL; Zeng GM Appl Biochem Biotechnol; 2013 Nov; 171(6):1416-28. PubMed ID: 23955350 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]