BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 19555990)

  • 21. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time.
    Buitrón G; Carvajal C
    Bioresour Technol; 2010 Dec; 101(23):9071-7. PubMed ID: 20655747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.
    Wang A; Ren N; Wang X; Lee D
    J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step.
    Rincón B; Borja R; Martín MA; Martín A
    Waste Manag; 2009 Sep; 29(9):2566-73. PubMed ID: 19450962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR.
    Fan KS; Kan NR; Lay JJ
    Bioresour Technol; 2006 Jan; 97(1):84-9. PubMed ID: 16154506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.
    Huang CL; Chen CC; Lin CY; Liu WT
    Water Sci Technol; 2009; 59(10):1901-9. PubMed ID: 19474483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction.
    Thabet OB; Bouallagui H; Cayol JL; Ollivier B; Fardeau ML; Hamdi M
    J Hazard Mater; 2009 Aug; 167(1-3):1133-40. PubMed ID: 19272702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial community analysis during continuous fermentation of thermally hydrolysed waste activated sludge.
    Cirne DG; Bond P; Pratt S; Lant P; Batstone DJ
    Water Sci Technol; 2012; 65(1):7-14. PubMed ID: 22173402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor.
    Han W; Wang B; Zhou Y; Wang DX; Wang Y; Yue LR; Li YF; Ren NQ
    Bioresour Technol; 2012 Apr; 110():219-23. PubMed ID: 22326329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH.
    Tang GL; Huang J; Sun ZJ; Tang QQ; Yan CH; Liu GQ
    J Biosci Bioeng; 2008 Jul; 106(1):80-7. PubMed ID: 18691536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fermentative biohydrogen production from lactate and acetate.
    Wu CW; Whang LM; Cheng HH; Chan KC
    Bioresour Technol; 2012 Jun; 113():30-6. PubMed ID: 22318084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological hydrogen production in a UASB reactor with granules. II: Reactor performance in 3-year operation.
    Yu HQ; Mu Y
    Biotechnol Bioeng; 2006 Aug; 94(5):988-95. PubMed ID: 16615161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process.
    Jo JH; Lee DS; Park D; Park JM
    Bioresour Technol; 2008 Sep; 99(14):6666-72. PubMed ID: 18248983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfate reduction during the acidification of sucrose at pH 5 under thermophilic (55 degrees C) conditions. II: effect of sulfide and COD/SO(2-)(4) ratio.
    Lopes SI; Capela MI; Lens PN
    Bioresour Technol; 2010 Jun; 101(12):4278-84. PubMed ID: 20171883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of HRT (hydraulic retention time) and SRT (solid retention time) on the hydrolytic pre-treatment of urban wastewater.
    Ligero P; de Vega A; Soto M
    Water Sci Technol; 2001; 44(4):7-14. PubMed ID: 11575103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of substrate concentration on the stability and yield of continuous biohydrogen production.
    Kyazze G; Martinez-Perez N; Dinsdale R; Premier GC; Hawkes FR; Guwy AJ; Hawkes DL
    Biotechnol Bioeng; 2006 Apr; 93(5):971-9. PubMed ID: 16353197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of COD/SO(4)(2-) ratio and sulfide on thermophilic (55 degrees C) sulfate reduction during the acidification of sucrose at pH 6.
    Lopes SI; Wang X; Capela MI; Lens PN
    Water Res; 2007 Jun; 41(11):2379-92. PubMed ID: 17434203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anaerobic acidification of a synthetic wastewater in batch reactors at 55 degrees C.
    Yu HQ; Fang HH
    Water Sci Technol; 2002; 46(11-12):153-7. PubMed ID: 12523747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 degrees C).
    Liu D; Zeng RJ; Angelidaki I
    Biotechnol Bioeng; 2008 Aug; 100(6):1108-14. PubMed ID: 18553394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of influent COD/SO4(2-) ratios on mesophilic anaerobic reactor biomass populations: physico-chemical and microbiological properties.
    O'Reilly C; Colleran E
    FEMS Microbiol Ecol; 2006 Apr; 56(1):141-53. PubMed ID: 16542412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.
    Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY
    Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.