These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 19556006)
1. Molecular hallmarks of anti-chromatin antibodies associated with the lupus susceptibility locus, Sle1. Liang Z; Chang S; Youn MS; Mohan C Mol Immunol; 2009 Aug; 46(13):2671-81. PubMed ID: 19556006 [TBL] [Abstract][Full Text] [Related]
2. Anti-nuclear antibody reactivity in lupus may be partly hard-wired into the primary B-cell repertoire. Chang S; Yang L; Moon YM; Cho YG; Min SY; Kim TJ; Kim YJ; Patrick W; Kim HY; Mohan C Mol Immunol; 2009 Oct; 46(16):3420-6. PubMed ID: 19699528 [TBL] [Abstract][Full Text] [Related]
3. Alterations in B cell development, CDR-H3 repertoire and dsDNA-binding antibody production among C57BL/6 ΔD-iD mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Khass M; Schelonka RL; Liu CR; Elgavish A; Morel L; Burrows PD; Schroeder HW Autoimmunity; 2017 Feb; 50(1):42-51. PubMed ID: 28166678 [TBL] [Abstract][Full Text] [Related]
4. The lupus susceptibility locus Sle1 facilitates the peripheral development and selection of anti-DNA B cells through impaired receptor editing. Chang SH; Kim TJ; Kim YJ; Liu Y; Min SY; Park MJ; Park HS; Lee SK; Nam KH; Kim HY; Mohan C; Kim HR J Immunol; 2014 Jun; 192(12):5579-85. PubMed ID: 24835399 [TBL] [Abstract][Full Text] [Related]
5. Genetic dissection of SLE pathogenesis. Sle1 on murine chromosome 1 leads to a selective loss of tolerance to H2A/H2B/DNA subnucleosomes. Mohan C; Alas E; Morel L; Yang P; Wakeland EK J Clin Invest; 1998 Mar; 101(6):1362-72. PubMed ID: 9502778 [TBL] [Abstract][Full Text] [Related]
6. Genetic dissection of SLE pathogenesis: adoptive transfer of Sle1 mediates the loss of tolerance by bone marrow-derived B cells. Sobel ES; Mohan C; Morel L; Schiffenbauer J; Wakeland EK J Immunol; 1999 Feb; 162(4):2415-21. PubMed ID: 9973523 [TBL] [Abstract][Full Text] [Related]
7. Chromatin specificity of anti-double-stranded DNA antibodies and a role for Arg residues in the third complementarity-determining region of the heavy chain. Guth AM; Zhang X; Smith D; Detanico T; Wysocki LJ J Immunol; 2003 Dec; 171(11):6260-6. PubMed ID: 14634143 [TBL] [Abstract][Full Text] [Related]
8. Utilization of the VH4-21 gene segment by anti-DNA antibodies from patients with systemic lupus erythematosus. Stevenson FK; Longhurst C; Chapman CJ; Ehrenstein M; Spellerberg MB; Hamblin TJ; Ravirajan CT; Latchman D; Isenberg D J Autoimmun; 1993 Dec; 6(6):809-25. PubMed ID: 8155258 [TBL] [Abstract][Full Text] [Related]
9. Lupus susceptibility genes may breach tolerance to DNA by impairing receptor editing of nuclear antigen-reactive B cells. Liu Y; Li L; Kumar KR; Xie C; Lightfoot S; Zhou XJ; Kearney JF; Weigert M; Mohan C J Immunol; 2007 Jul; 179(2):1340-52. PubMed ID: 17617627 [TBL] [Abstract][Full Text] [Related]
10. The major murine systemic lupus erythematosus susceptibility locus Sle1 results in abnormal functions of both B and T cells. Sobel ES; Satoh M; Chen Y; Wakeland EK; Morel L J Immunol; 2002 Sep; 169(5):2694-700. PubMed ID: 12193743 [TBL] [Abstract][Full Text] [Related]
11. The critical role of arginine residues in the binding of human monoclonal antibodies to cardiolipin. Giles I; Lambrianides N; Latchman D; Chen P; Chukwuocha R; Isenberg D; Rahman A Arthritis Res Ther; 2005; 7(1):R47-56. PubMed ID: 15642142 [TBL] [Abstract][Full Text] [Related]
12. Genetic determination of T cell help in loss of tolerance to nuclear antigens. Chen Y; Cuda C; Morel L J Immunol; 2005 Jun; 174(12):7692-702. PubMed ID: 15944270 [TBL] [Abstract][Full Text] [Related]
13. Genetic dissection of systemic lupus erythematosus pathogenesis: partial functional complementation between Sle1 and Sle3/5 demonstrates requirement for intracellular coexpression for full phenotypic expression of lupus. Wakui M; Morel L; Butfiloski EJ; Kim C; Sobel ES J Immunol; 2005 Jul; 175(2):1337-45. PubMed ID: 16002739 [TBL] [Abstract][Full Text] [Related]
14. Genetic dissection of lupus pathogenesis: Sle3/5 impacts IgH CDR3 sequences, somatic mutations, and receptor editing. Wakui M; Kim J; Butfiloski EJ; Morel L; Sobel ES J Immunol; 2004 Dec; 173(12):7368-76. PubMed ID: 15585861 [TBL] [Abstract][Full Text] [Related]
15. Pathogenic profiles and molecular signatures of antinuclear autoantibodies rescued from NZM2410 lupus mice. Liang Z; Xie C; Chen C; Kreska D; Hsu K; Li L; Zhou XJ; Mohan C J Exp Med; 2004 Feb; 199(3):381-98. PubMed ID: 14757744 [TBL] [Abstract][Full Text] [Related]
16. Influence of the immunoglobulin heavy chain locus on expression of the VK1GAC light chain. Fulton RJ; Davie JM J Immunol; 1984 Jul; 133(1):465-70. PubMed ID: 6427345 [TBL] [Abstract][Full Text] [Related]
17. Functional dissection of systemic lupus erythematosus using congenic mouse strains. Morel L; Mohan C; Yu Y; Croker BP; Tian N; Deng A; Wakeland EK J Immunol; 1997 Jun; 158(12):6019-28. PubMed ID: 9190957 [TBL] [Abstract][Full Text] [Related]
19. Genetic dissection of systemic lupus erythematosus pathogenesis: evidence for functional expression of Sle3/5 by non-T cells. Sobel ES; Morel L; Baert R; Mohan C; Schiffenbauer J; Wakeland EK J Immunol; 2002 Oct; 169(7):4025-32. PubMed ID: 12244205 [TBL] [Abstract][Full Text] [Related]
20. Stable expression of a recombinant human antinucleosome antibody to investigate relationships between antibody sequence, binding properties, and pathogenicity. Mason LJ; Lambrianides A; Haley JD; Manson JJ; Latchman DS; Isenberg DA; Rahman A Arthritis Res Ther; 2005; 7(5):R971-83. PubMed ID: 16207338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]