BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 19556119)

  • 1. Fabrication and characterization of a multiwell array SERS chip with biological applications.
    Abell JL; Driskell JD; Dluhy RA; Tripp RA; Zhao YP
    Biosens Bioelectron; 2009 Aug; 24(12):3663-70. PubMed ID: 19556119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates.
    Lin DZ; Chen YP; Jhuang PJ; Chu JY; Yeh JT; Wang JK
    Opt Express; 2011 Feb; 19(5):4337-45. PubMed ID: 21369264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reading microdots of a molecularly imprinted polymer by surface-enhanced Raman spectroscopy.
    Kantarovich K; Tsarfati I; Gheber LA; Haupt K; Bar I
    Biosens Bioelectron; 2010 Oct; 26(2):809-14. PubMed ID: 20621465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nanoforest structure for practical surface-enhanced Raman scattering substrates.
    Seol ML; Choi SJ; Baek DJ; Park TJ; Ahn JH; Lee SY; Choi YK
    Nanotechnology; 2012 Mar; 23(9):095301. PubMed ID: 22322132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging.
    Lee M; Lee S; Lee JH; Lim HW; Seong GH; Lee EK; Chang SI; Oh CH; Choo J
    Biosens Bioelectron; 2011 Jan; 26(5):2135-41. PubMed ID: 20926277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography.
    Zhang X; Yonzon CR; Young MA; Stuart DA; Van Duyne RP
    IEE Proc Nanobiotechnol; 2005 Dec; 152(6):195-206. PubMed ID: 16441180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-patterned SERS substrate: application for protein analysis vs. temperature.
    Das G; Mecarini F; Gentile F; De Angelis F; Mohan Kumar H; Candeloro P; Liberale C; Cuda G; Di Fabrizio E
    Biosens Bioelectron; 2009 Feb; 24(6):1693-9. PubMed ID: 18976899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing.
    Dinish US; Yaw FC; Agarwal A; Olivo M
    Biosens Bioelectron; 2011 Jan; 26(5):1987-92. PubMed ID: 20869866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological applications of localised surface plasmonic phenomenae.
    Stuart DA; Haes AJ; Yonzon CR; Hicks EM; Van Duyne RP
    IEE Proc Nanobiotechnol; 2005 Feb; 152(1):13-32. PubMed ID: 16441155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-uniform excitation source for cascade enhancement of SERS via focusing of surface plasmons.
    Zhang H; Ho HP
    Opt Express; 2009 Nov; 17(23):21159-68. PubMed ID: 19997355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection.
    Bi L; Rao Y; Tao Q; Dong J; Su T; Liu F; Qian W
    Biosens Bioelectron; 2013 May; 43():193-9. PubMed ID: 23306075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A SERS-Assisted 3D Barcode Chip for High-Throughput Biosensing.
    Wu L; Wang Z; Fan K; Zong S; Cui Y
    Small; 2015 Jun; 11(23):2798-806. PubMed ID: 25689780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterned silver nanorod array substrates for surface-enhanced Raman scattering.
    Marotta NE; Barber JR; Dluhy PR; Bottomley LA
    Appl Spectrosc; 2009 Oct; 63(10):1101-6. PubMed ID: 19843359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible and mechanical strain resistant large area SERS active substrates.
    Singh JP; Chu H; Abell J; Tripp RA; Zhao Y
    Nanoscale; 2012 Jun; 4(11):3410-4. PubMed ID: 22544280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance.
    Rebe Raz S; Bremer MG; Giesbers M; Norde W
    Biosens Bioelectron; 2008 Dec; 24(4):552-7. PubMed ID: 18606535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman scattering substrates fabricated using electroless plating on polymer-templated nanostructures.
    Bantz KC; Haynes CL
    Langmuir; 2008 Jun; 24(11):5862-7. PubMed ID: 18461977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver salts of aromatic thiols applicable as core materials of molecular sensors operating via SERS and fluorescence.
    Kim K; Lee YM; Lee HB; Shin KS
    Biosens Bioelectron; 2009 Aug; 24(12):3615-21. PubMed ID: 19523806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focusing plasmons in nanoslits for surface-enhanced Raman scattering.
    Chen C; Hutchison JA; Van Dorpe P; Kox R; De Vlaminck I; Uji-I H; Hofkens J; Lagae L; Maes G; Borghs G
    Small; 2009 Dec; 5(24):2876-82. PubMed ID: 19816878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip.
    Yuk JS; Trnavsky M; McDonagh C; MacCraith BD
    Biosens Bioelectron; 2010 Feb; 25(6):1344-9. PubMed ID: 19932607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.