BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 19556120)

  • 1. Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells.
    Zhuang L; Zhou S; Wang Y; Liu C; Geng S
    Biosens Bioelectron; 2009 Aug; 24(12):3652-6. PubMed ID: 19556120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separator characteristics for increasing performance of microbial fuel cells.
    Zhang X; Cheng S; Wang X; Huang X; Logan BE
    Environ Sci Technol; 2009 Nov; 43(21):8456-61. PubMed ID: 19924984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode.
    Behera M; Jana PS; Ghangrekar MM
    Bioresour Technol; 2010 Feb; 101(4):1183-9. PubMed ID: 19800223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells.
    Cheng S; Liu H; Logan BE
    Environ Sci Technol; 2006 Jan; 40(1):364-9. PubMed ID: 16433373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell.
    Yang S; Jia B; Liu H
    Bioresour Technol; 2009 Feb; 100(3):1197-202. PubMed ID: 18790635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors.
    Zhang F; Saito T; Cheng S; Hickner MA; Logan BE
    Environ Sci Technol; 2010 Feb; 44(4):1490-5. PubMed ID: 20099808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power generation in MFCs with architectures based on tubular cathodes or fully tubular reactors.
    Zuo Y; Logan BE
    Water Sci Technol; 2011; 64(11):2253-8. PubMed ID: 22156130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.
    Cheng S; Kiely P; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):367-71. PubMed ID: 20580223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell.
    Shimoyama T; Komukai S; Yamazawa A; Ueno Y; Logan BE; Watanabe K
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):325-30. PubMed ID: 18581110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved performance of single-chamber microbial fuel cells through control of membrane deformation.
    Zhang X; Cheng S; Huang X; Logan BE
    Biosens Bioelectron; 2010 Mar; 25(7):1825-8. PubMed ID: 20022480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells.
    Zhang L; Liu C; Zhuang L; Li W; Zhou S; Zhang J
    Biosens Bioelectron; 2009 May; 24(9):2825-9. PubMed ID: 19297145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved energy output levels from small-scale Microbial Fuel Cells.
    Ieropoulos I; Greenman J; Melhuish C
    Bioelectrochemistry; 2010 Apr; 78(1):44-50. PubMed ID: 19540172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes.
    Zhang X; Cheng S; Liang P; Huang X; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):372-5. PubMed ID: 20566288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells.
    You S; Zhao Q; Zhang J; Liu H; Jiang J; Zhao S
    Biosens Bioelectron; 2008 Feb; 23(7):1157-60. PubMed ID: 18068969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell.
    Aldrovandi A; Marsili E; Stante L; Paganin P; Tabacchioni S; Giordano A
    Bioresour Technol; 2009 Jul; 100(13):3252-60. PubMed ID: 19303285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design.
    Ahn Y; Logan BE
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2241-8. PubMed ID: 22314518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy.
    Borole AP; Aaron D; Hamilton CY; Tsouris C
    Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous bioelectricity production and sustainable wastewater treatment in a microbial fuel cell constructed with non-catalyzed granular graphite electrodes and permeable membrane.
    Tran HT; Ryu JH; Jia YH; Oh SJ; Choi JY; Park DH; Ahn DH
    Water Sci Technol; 2010; 61(7):1819-27. PubMed ID: 20371941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.