These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 19556340)
1. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Liu S; Tang W; Fang J; Ren J; Li H; Xiao Z; Quarles LD Mol Endocrinol; 2009 Sep; 23(9):1505-18. PubMed ID: 19556340 [TBL] [Abstract][Full Text] [Related]
2. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. Martin A; Liu S; David V; Li H; Karydis A; Feng JQ; Quarles LD FASEB J; 2011 Aug; 25(8):2551-62. PubMed ID: 21507898 [TBL] [Abstract][Full Text] [Related]
3. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice. Liu S; Tang W; Zhou J; Vierthaler L; Quarles LD Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1636-44. PubMed ID: 17848631 [TBL] [Abstract][Full Text] [Related]
4. SPR4-peptide alters bone metabolism of normal and HYP mice. Zelenchuk LV; Hedge AM; Rowe PS Bone; 2015 Mar; 72():23-33. PubMed ID: 25460577 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of the DMP1 C-terminal fragment stimulates FGF23 and exacerbates the hypophosphatemic rickets phenotype in Hyp mice. Martin A; David V; Li H; Dai B; Feng JQ; Quarles LD Mol Endocrinol; 2012 Nov; 26(11):1883-95. PubMed ID: 22930691 [TBL] [Abstract][Full Text] [Related]
6. Excessive Osteocytic Fgf23 Secretion Contributes to Pyrophosphate Accumulation and Mineralization Defect in Hyp Mice. Murali SK; Andrukhova O; Clinkenbeard EL; White KE; Erben RG PLoS Biol; 2016 Apr; 14(4):e1002427. PubMed ID: 27035636 [TBL] [Abstract][Full Text] [Related]
7. Pathogenic role of Fgf23 in Hyp mice. Liu S; Zhou J; Tang W; Jiang X; Rowe DW; Quarles LD Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E38-49. PubMed ID: 16449303 [TBL] [Abstract][Full Text] [Related]
8. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Rowe PS Crit Rev Eukaryot Gene Expr; 2012; 22(1):61-86. PubMed ID: 22339660 [TBL] [Abstract][Full Text] [Related]
9. Osteocytes and the pathogenesis of hypophosphatemic rickets. Yamazaki M; Michigami T Front Endocrinol (Lausanne); 2022; 13():1005189. PubMed ID: 36246908 [TBL] [Abstract][Full Text] [Related]
10. Osteocyte-specific deletion of Fgfr1 suppresses FGF23. Xiao Z; Huang J; Cao L; Liang Y; Han X; Quarles LD PLoS One; 2014; 9(8):e104154. PubMed ID: 25089825 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylated acidic serine-aspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity. Liu S; Rowe PS; Vierthaler L; Zhou J; Quarles LD J Endocrinol; 2007 Jan; 192(1):261-7. PubMed ID: 17210763 [TBL] [Abstract][Full Text] [Related]
12. Hexa-D-arginine treatment increases 7B2•PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype. Yuan B; Feng JQ; Bowman S; Liu Y; Blank RD; Lindberg I; Drezner MK J Bone Miner Res; 2013 Jan; 28(1):56-72. PubMed ID: 22886699 [TBL] [Abstract][Full Text] [Related]
13. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells. Ichikawa S; Austin AM; Gray AK; Econs MJ J Bone Miner Res; 2012 Feb; 27(2):453-60. PubMed ID: 22006791 [TBL] [Abstract][Full Text] [Related]
14. Osteocytes but not osteoblasts directly build mineralized bone structures. Wang K; Ren Y; Lin S; Jing Y; Ma C; Wang J; Yuan XB; Han X; Zhao H; Wang Z; Zheng M; Xiao Y; Chen L; Olsen BR; Feng JQ Int J Biol Sci; 2021; 17(10):2430-2448. PubMed ID: 34326685 [TBL] [Abstract][Full Text] [Related]
15. Dysregulated gene expression in the primary osteoblasts and osteocytes isolated from hypophosphatemic Hyp mice. Miyagawa K; Yamazaki M; Kawai M; Nishino J; Koshimizu T; Ohata Y; Tachikawa K; Mikuni-Takagaki Y; Kogo M; Ozono K; Michigami T PLoS One; 2014; 9(4):e93840. PubMed ID: 24710520 [TBL] [Abstract][Full Text] [Related]
16. FGF23-induced hypophosphatemia persists in Hyp mice deficient in the WNT coreceptor Lrp6. Uchihashi K; Nakatani T; Goetz R; Mohammadi M; He X; Razzaque MS Contrib Nephrol; 2013; 180():124-37. PubMed ID: 23652555 [TBL] [Abstract][Full Text] [Related]
17. Increased Col10a1 expression is not causative for the phenotype of Phex-deficient Hyp mice. Yorgan T; Rendenbach C; Jeschke A; Amling M; Cheah KS; Schinke T Biochem Biophys Res Commun; 2013 Dec; 442(3-4):209-13. PubMed ID: 24269824 [TBL] [Abstract][Full Text] [Related]
18. Complex intrinsic abnormalities in osteoblast lineage cells of X-linked hypophosphatemia: Analysis of human iPS cell models generated by CRISPR/Cas9-mediated gene ablation. Nakanishi T; Yamazaki M; Tachikawa K; Ueta A; Kawai M; Ozono K; Michigami T Bone; 2024 Apr; 181():117044. PubMed ID: 38331306 [TBL] [Abstract][Full Text] [Related]
19. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. Yuan B; Takaiwa M; Clemens TL; Feng JQ; Kumar R; Rowe PS; Xie Y; Drezner MK J Clin Invest; 2008 Feb; 118(2):722-34. PubMed ID: 18172553 [TBL] [Abstract][Full Text] [Related]
20. Sclerostin antibody improves phosphate metabolism hormones, bone formation rates, and bone mass in adult Hyp mice. Carpenter KA; Davison R; Shakthivel S; Anderson KD; Ko FC; Ross RD Bone; 2022 Jan; 154():116201. PubMed ID: 34537437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]