These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 19556502)
1. Elevated CO2 enhances otolith growth in young fish. Checkley DM; Dickson AG; Takahashi M; Radich JA; Eisenkolb N; Asch R Science; 2009 Jun; 324(5935):1683. PubMed ID: 19556502 [TBL] [Abstract][Full Text] [Related]
2. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Yamamoto-Kawai M; McLaughlin FA; Carmack EC; Nishino S; Shimada K Science; 2009 Nov; 326(5956):1098-100. PubMed ID: 19965425 [TBL] [Abstract][Full Text] [Related]
3. Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Coll-Lladó C; Giebichenstein J; Webb PB; Bridges CR; de la Serrana DG Sci Rep; 2018 May; 8(1):8384. PubMed ID: 29849112 [TBL] [Abstract][Full Text] [Related]
4. The oceanic sink for anthropogenic CO2. Sabine CL; Feely RA; Gruber N; Key RM; Lee K; Bullister JL; Wanninkhof R; Wong CS; Wallace DW; Tilbrook B; Millero FJ; Peng TH; Kozyr A; Ono T; Rios AF Science; 2004 Jul; 305(5682):367-71. PubMed ID: 15256665 [TBL] [Abstract][Full Text] [Related]
5. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Barker S; Elderfield H Science; 2002 Aug; 297(5582):833-6. PubMed ID: 12161653 [TBL] [Abstract][Full Text] [Related]
6. Otolith reliability is context-dependent for estimating warming and CO Tang B; Ding L; Ding C; He D; Su H; Tao J Glob Chang Biol; 2024 Sep; 30(9):e17501. PubMed ID: 39239976 [TBL] [Abstract][Full Text] [Related]
7. Ocean science. The fate of industrial carbon dioxide. Takahashi T Science; 2004 Jul; 305(5682):352-3. PubMed ID: 15256662 [No Abstract] [Full Text] [Related]
8. Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Kikkawa T; Kita J; Ishimatsu A Mar Pollut Bull; 2004 Jan; 48(1-2):108-10. PubMed ID: 14725881 [TBL] [Abstract][Full Text] [Related]
9. Contribution of fish to the marine inorganic carbon cycle. Wilson RW; Millero FJ; Taylor JR; Walsh PJ; Christensen V; Jennings S; Grosell M Science; 2009 Jan; 323(5912):359-62. PubMed ID: 19150840 [TBL] [Abstract][Full Text] [Related]
10. Fall meeting of the American Geophysical Union. The many dangers of greenhouse acid. Kerr RA Science; 2009 Jan; 323(5913):459. PubMed ID: 19164726 [No Abstract] [Full Text] [Related]
11. Pilot study to investigate the effect of long-term exposure to high pCO Coll-Lladó C; Mittermayer F; Webb PB; Allison N; Clemmesen C; Stiasny M; Bridges CR; Göttler G; Garcia de la Serrana D Fish Physiol Biochem; 2021 Dec; 47(6):1879-1891. PubMed ID: 34585317 [TBL] [Abstract][Full Text] [Related]
17. The incorporation of strontium and barium into the otoliths of the flounder Paralichthys olivaceus at early life stages demonstrates resilience to ocean acidification. Tian H; Liu J; Shan X; Cao L; Jin X; Dou S J Fish Biol; 2024 Jul; 105(1):141-152. PubMed ID: 38653715 [TBL] [Abstract][Full Text] [Related]
18. Scleractinian coral species survive and recover from decalcification. Fine M; Tchernov D Science; 2007 Mar; 315(5820):1811. PubMed ID: 17395821 [TBL] [Abstract][Full Text] [Related]
20. Identification of a novel matrix protein contained in a protein aggregate associated with collagen in fish otoliths. Tohse H; Takagi Y; Nagasawa H FEBS J; 2008 May; 275(10):2512-23. PubMed ID: 18410381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]