These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 19556544)

  • 21. Mechano-chemical feedbacks regulate actin mesh growth in lamellipodial protrusions.
    Hu L; Papoian GA
    Biophys J; 2010 Apr; 98(8):1375-84. PubMed ID: 20409456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo imaging of growth cone and filopodial dynamics: evidence for contact-mediated retraction of filopodia leading to the tiling of sibling processes.
    Baker MW; Macagno ER
    J Comp Neurol; 2007 Feb; 500(5):850-62. PubMed ID: 17177256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vinculin is a dually regulated actin filament barbed end-capping and side-binding protein.
    Le Clainche C; Dwivedi SP; Didry D; Carlier MF
    J Biol Chem; 2010 Jul; 285(30):23420-32. PubMed ID: 20484056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics.
    Sinnar SA; Antoku S; Saffin JM; Cooper JA; Halpain S
    Mol Biol Cell; 2014 Jul; 25(14):2152-60. PubMed ID: 24829386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity.
    Kress H; Stelzer EH; Holzer D; Buss F; Griffiths G; Rohrbach A
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11633-8. PubMed ID: 17620618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanics and dynamics of actin-driven thin membrane protrusions.
    Atilgan E; Wirtz D; Sun SX
    Biophys J; 2006 Jan; 90(1):65-76. PubMed ID: 16214866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The filopodium: a stable structure with highly regulated repetitive cycles of elongation and persistence depending on the actin cross-linker fascin.
    Schäfer C; Faust U; Kirchgessner N; Merkel R; Hoffmann B
    Cell Adh Migr; 2011; 5(5):431-8. PubMed ID: 21975552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of capping protein on a growing filopodium.
    Daniels DR
    Biophys J; 2010 Apr; 98(7):1139-48. PubMed ID: 20371313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling the effect of myosin X motors on filopodia growth.
    Wolff K; Barrett-Freeman C; Evans MR; Goryachev AB; Marenduzzo D
    Phys Biol; 2014 Feb; 11(1):016005. PubMed ID: 24464797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of actin assembly associated with protrusion and adhesion in cell migration.
    Le Clainche C; Carlier MF
    Physiol Rev; 2008 Apr; 88(2):489-513. PubMed ID: 18391171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A stochastic analysis of actin polymerization in the presence of twinfilin and gelsolin.
    Matzavinos A; Othmer HG
    J Theor Biol; 2007 Dec; 249(4):723-36. PubMed ID: 17931658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks.
    Funk J; Merino F; Schaks M; Rottner K; Raunser S; Bieling P
    Nat Commun; 2021 Sep; 12(1):5329. PubMed ID: 34504078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro assembly of filopodia-like bundles.
    Vignjevic D; Peloquin J; Borisy GG
    Methods Enzymol; 2006; 406():727-39. PubMed ID: 16472701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How capping protein enhances actin filament growth and nucleation on biomimetic beads.
    Wang R; Carlsson AE
    Phys Biol; 2015 Nov; 12(6):066008. PubMed ID: 26602226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. V-1 regulates capping protein activity in vivo.
    Jung G; Alexander CJ; Wu XS; Piszczek G; Chen BC; Betzig E; Hammer JA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):E6610-E6619. PubMed ID: 27791032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end.
    Mejillano MR; Kojima S; Applewhite DA; Gertler FB; Svitkina TM; Borisy GG
    Cell; 2004 Aug; 118(3):363-73. PubMed ID: 15294161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct roles of four gelsolin-like domains of Caenorhabditis elegans gelsolin-like protein-1 in actin filament severing, barbed end capping, and phosphoinositide binding.
    Liu Z; Klaavuniemi T; Ono S
    Biochemistry; 2010 May; 49(20):4349-60. PubMed ID: 20392036
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Filopodial initiation and a novel filament-organizing center, the focal ring.
    Steketee M; Balazovich K; Tosney KW
    Mol Biol Cell; 2001 Aug; 12(8):2378-95. PubMed ID: 11514623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formin and capping protein together embrace the actin filament in a ménage à trois.
    Shekhar S; Kerleau M; Kühn S; Pernier J; Romet-Lemonne G; Jégou A; Carlier MF
    Nat Commun; 2015 Nov; 6():8730. PubMed ID: 26564775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Profilin Interaction with Actin Filament Barbed End Controls Dynamic Instability, Capping, Branching, and Motility.
    Pernier J; Shekhar S; Jegou A; Guichard B; Carlier MF
    Dev Cell; 2016 Jan; 36(2):201-14. PubMed ID: 26812019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.