These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19556680)

  • 1. Assessment of gliosis around moveable implants in the brain.
    Stice P; Muthuswamy J
    J Neural Eng; 2009 Aug; 6(4):046004. PubMed ID: 19556680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex.
    McCreery D; Cogan S; Kane S; Pikov V
    J Neural Eng; 2016 Jun; 13(3):036012. PubMed ID: 27108712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Ahmed I; Coffey K; Barker D; Saste K; Kals K; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    J Neural Eng; 2018 Jun; 15(3):036002. PubMed ID: 29485103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex.
    Stice P; Gilletti A; Panitch A; Muthuswamy J
    J Neural Eng; 2007 Jun; 4(2):42-53. PubMed ID: 17409479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term changes in the material properties of brain tissue at the implant-tissue interface.
    Sridharan A; Rajan SD; Muthuswamy J
    J Neural Eng; 2013 Dec; 10(6):066001. PubMed ID: 24099854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
    He W; McConnell GC; Bellamkonda RV
    J Neural Eng; 2006 Dec; 3(4):316-26. PubMed ID: 17124336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal expression of RNA-seq identified proteins at the electrode interface.
    Thompson CH; Evans BM; Zhao DX; Purcell EK
    Acta Biomater; 2023 Jul; 164():209-222. PubMed ID: 37116634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays.
    Biran R; Martin DC; Tresco PA
    Exp Neurol; 2005 Sep; 195(1):115-26. PubMed ID: 16045910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An astrocyte derived extracellular matrix coating reduces astrogliosis surrounding chronically implanted microelectrode arrays in rat cortex.
    Oakes RS; Polei MD; Skousen JL; Tresco PA
    Biomaterials; 2018 Feb; 154():1-11. PubMed ID: 29117574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial transcriptomics at the brain-electrode interface in rat motor cortex and the relationship to recording quality.
    Whitsitt Q; Saxena A; Patel B; Evans BM; Hunt B; Purcell EK
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38885679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A technique to prevent dural adhesions to chronically implanted microelectrode arrays.
    Maynard EM; Fernandez E; Normann RA
    J Neurosci Methods; 2000 Apr; 97(2):93-101. PubMed ID: 10788663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull.
    Biran R; Martin DC; Tresco PA
    J Biomed Mater Res A; 2007 Jul; 82(1):169-78. PubMed ID: 17266019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes.
    Zhong Y; Bellamkonda RV
    Brain Res; 2007 May; 1148():15-27. PubMed ID: 17376408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of the tissue response to chronically implanted microwire electrodes in rat cortex.
    Winslow BD; Tresco PA
    Biomaterials; 2010 Mar; 31(7):1558-67. PubMed ID: 19963267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-Fiber Based Microelectrode Array Embedded with a Biodegradable Silk Support for In Vivo Neural Recording.
    Lee Y; Kong C; Chang JW; Jun SB
    J Korean Med Sci; 2019 Jan; 34(4):e24. PubMed ID: 30686948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates.
    Barrese JC; Aceros J; Donoghue JP
    J Neural Eng; 2016 Apr; 13(2):026003. PubMed ID: 26824680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-Term Effects of Gamma Stimulation on Neuroinflammation at the Tissue-Electrode Interface in Motor Cortex.
    Boltcreed E; Ersöz A; Han M; McConnell GC
    Neuromodulation; 2024 Apr; 27(3):500-508. PubMed ID: 38099883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis.
    Cheung KC; Renaud P; Tanila H; Djupsund K
    Biosens Bioelectron; 2007 Mar; 22(8):1783-90. PubMed ID: 17027251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex.
    Hascup ER; af Bjerkén S; Hascup KN; Pomerleau F; Huettl P; Strömberg I; Gerhardt GA
    Brain Res; 2009 Sep; 1291():12-20. PubMed ID: 19577548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.