These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19556776)

  • 1. Identification of a maize neocentromere in an oat-maize addition line.
    Topp CN; Okagaki RJ; Melo JR; Kynast RG; Phillips RL; Dawe RK
    Cytogenet Genome Res; 2009; 124(3-4):228-38. PubMed ID: 19556776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize centromeres: organization and functional adaptation in the genetic background of oat.
    Jin W; Melo JR; Nagaki K; Talbert PB; Henikoff S; Dawe RK; Jiang J
    Plant Cell; 2004 Mar; 16(3):571-81. PubMed ID: 14973167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maize centromeres expand and adopt a uniform size in the genetic background of oat.
    Wang K; Wu Y; Zhang W; Dawe RK; Jiang J
    Genome Res; 2014 Jan; 24(1):107-16. PubMed ID: 24100079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3.
    Zhao H; Zeng Z; Koo DH; Gill BS; Birchler JA; Jiang J
    Chromosome Res; 2017 Oct; 25(3-4):299-311. PubMed ID: 28831743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neocentromere-mediated chromosome movement in maize.
    Yu HG; Hiatt EN; Chan A; Sweeney M; Dawe RK
    J Cell Biol; 1997 Nov; 139(4):831-40. PubMed ID: 9362502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3.
    Zhong CX; Marshall JB; Topp C; Mroczek R; Kato A; Nagaki K; Birchler JA; Jiang J; Dawe RK
    Plant Cell; 2002 Nov; 14(11):2825-36. PubMed ID: 12417704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequences associated with A chromosome centromeres are present throughout the maize B chromosome.
    Lamb JC; Kato A; Birchler JA
    Chromosoma; 2005 Feb; 113(7):337-49. PubMed ID: 15586285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and functional dissection of the maize B chromosome centromere.
    Jin W; Lamb JC; Vega JM; Dawe RK; Birchler JA; Jiang J
    Plant Cell; 2005 May; 17(5):1412-23. PubMed ID: 15805482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addition of individual chromosomes of maize inbreds B73 and Mo17 to oat cultivars Starter and Sun II: maize chromosome retention, transmission, and plant phenotype.
    Rines HW; Phillips RL; Kynast RG; Okagaki RJ; Galatowitsch MW; Huettl PA; Stec AO; Jacobs MS; Suresh J; Porter HL; Walch MD; Cabral CB
    Theor Appl Genet; 2009 Nov; 119(7):1255-64. PubMed ID: 19707741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) × pearl millet (Pennisetum glaucum L.) hybrid embryos.
    Ishii T; Sunamura N; Matsumoto A; Eltayeb AE; Tsujimoto H
    Chromosome Res; 2015 Dec; 23(4):709-18. PubMed ID: 26134441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic maize centromeres transmit chromosomes across generations.
    Dawe RK; Gent JI; Zeng Y; Zhang H; Fu FF; Swentowsky KW; Kim DW; Wang N; Liu J; Piri RD
    Nat Plants; 2023 Mar; 9(3):433-441. PubMed ID: 36928774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional and epigenetic adaptation of maize chromosomes in Oat-Maize addition lines.
    Dong Z; Yu J; Li H; Huang W; Xu L; Zhao Y; Zhang T; Xu W; Jiang J; Su Z; Jin W
    Nucleic Acids Res; 2018 Jun; 46(10):5012-5028. PubMed ID: 29579310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons.
    Wolfgruber TK; Sharma A; Schneider KL; Albert PS; Koo DH; Shi J; Gao Z; Han F; Lee H; Xu R; Allison J; Birchler JA; Jiang J; Dawe RK; Presting GG
    PLoS Genet; 2009 Nov; 5(11):e1000743. PubMed ID: 19956743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neocentromere on human chromosome 3 without detectable alpha-satellite DNA forms morphologically normal kinetochores.
    Wandall A; Tranebjaerg L; Tommerup N
    Chromosoma; 1998 Dec; 107(6-7):359-65. PubMed ID: 9914367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives.
    Gent JI; Wang N; Dawe RK
    Genome Biol; 2017 Jun; 18(1):121. PubMed ID: 28637491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centromere-encoded RNAs are integral components of the maize kinetochore.
    Topp CN; Zhong CX; Dawe RK
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15986-91. PubMed ID: 15514020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo centromere formation on a chromosome fragment in maize.
    Fu S; Lv Z; Gao Z; Wu H; Pang J; Zhang B; Dong Q; Guo X; Wang XJ; Birchler JA; Han F
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):6033-6. PubMed ID: 23530217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region.
    Lamb JC; Meyer JM; Birchler JA
    Chromosoma; 2007 Jun; 116(3):237-47. PubMed ID: 17256108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions.
    Ananiev EV; Phillips RL; Rines HW
    Proc Natl Acad Sci U S A; 1998 Oct; 95(22):13073-8. PubMed ID: 9789043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inbreeding drives maize centromere evolution.
    Schneider KL; Xie Z; Wolfgruber TK; Presting GG
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):E987-96. PubMed ID: 26858403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.