These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19557)

  • 1. Preferential hemolysis of postnatal calf red cells induced by internal alkalinization.
    Zeidler R; Kim HD
    J Gen Physiol; 1977 Sep; 70(3):385-401. PubMed ID: 19557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitory postnatal hemolysis of calf red cells by amino acids.
    Kim HD
    J Membr Biol; 1976 Feb; 26(1):71-90. PubMed ID: 3653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addition of oligosaccharide decreases the freezing lesions on human red blood cell membrane in the presence of dextran and glucose.
    Quan GB; Han Y; Liu MX; Fang L; Du W; Ren SP; Wang JX; Wang Y
    Cryobiology; 2011 Apr; 62(2):135-44. PubMed ID: 21276438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolysis of human erythrocytes induced by tamoxifen is related to disruption of membrane structure.
    Cruz Silva MM; Madeira VM; Almeida LM; Custódio JB
    Biochim Biophys Acta; 2000 Mar; 1464(1):49-61. PubMed ID: 10704919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effect of dextrose and sodium chloride on red cell osmotic fragility.
    Minn SK; Harnchonboth K; Mandel EE
    Am J Hematol; 1978; 5(1):33-42. PubMed ID: 747180
    [No Abstract]   [Full Text] [Related]  

  • 7. Some aspects of the osmotic lysis of erythrocytes. II. Differences in osmotic behaviour of erythrocytes after treatment with electrolyte and non-electrolyte solutions.
    Wessels JM; Veerkamp JH
    Biochim Biophys Acta; 1973 Jan; 291(1):178-89. PubMed ID: 4684608
    [No Abstract]   [Full Text] [Related]  

  • 8. Low pH-induced hemolysis of erythrocytes is related to the entry of the acid into cytosole and oxidative stress on cellular membranes.
    Ivanov IT
    Biochim Biophys Acta; 1999 Jan; 1415(2):349-60. PubMed ID: 9889396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of charged amphiphiles in depolarising solutions on potassium efflux and the osmotic fragility of human erythrocytes.
    Wróbel A
    Bioelectrochemistry; 2008 Aug; 73(2):117-22. PubMed ID: 18486568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of lactic acid on water content and osmotic fragility of erythrocytes in vivo.
    Kogawa H; Satoh M; Mitsudo M; Higuchi T; Kageyama K
    J Sports Med Phys Fitness; 1997 Mar; 37(1):61-4. PubMed ID: 9190127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serum-red cell interactions at low ionic strength: erythrocyte complement coating and hemolysis of paroxysmal nocturnal hemoglobinuria cells.
    Jenkins DE; Hartmann RC; Kerns AL
    J Clin Invest; 1967 May; 46(5):753-61. PubMed ID: 6025481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effects of some neutral amino acids against hypotonic hemolysis.
    Morimoto Y; Tanaka K; Iwakiri Y; Tokuhiro S; Fukushima S; Takeuchi Y
    Biol Pharm Bull; 1995 Oct; 18(10):1417-22. PubMed ID: 8593448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow phase hemolysis in hypotonic electrolyte solutions.
    Chan TK; LaCelle PL; Weed RI
    J Cell Physiol; 1975 Feb; 85(1):47-57. PubMed ID: 1110261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein.
    Furuya W; Tarshis T; Law FY; Knauf PA
    J Gen Physiol; 1984 May; 83(5):657-81. PubMed ID: 6736915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein.
    Bjerrum PJ; Wieth JO; Borders CL
    J Gen Physiol; 1983 Apr; 81(4):453-84. PubMed ID: 6854266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride conductance of the amphiuma red cell membrane.
    Lassen UV; Pape L; Vestergaard-Bogind B
    J Membr Biol; 1978 Feb; 39(1):27-48. PubMed ID: 24748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes.
    Kumar A; Ali M; Pandey BN; Hassan PA; Mishra KP
    Biochimie; 2010 Jul; 92(7):869-79. PubMed ID: 20362640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypertonic cryohemolysis: ionophore and pH effects.
    Jung CY; Green FA
    J Membr Biol; 1978 Mar; 39(2-3):273-84. PubMed ID: 25342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimentally induced cation leaks of the red cell membrane. On the mechanism of hemolysis in newborn infants.
    Schröter W; Bodemann H
    Biol Neonate; 1970; 15(56):291-9. PubMed ID: 5426915
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.