These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 19557139)

  • 1. Optimized null model for protein structure networks.
    Milenković T; Filippis I; Lappe M; Przulj N
    PLoS One; 2009 Jun; 4(6):e5967. PubMed ID: 19557139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrative approach to modeling biological networks.
    Memisevic V; Milenkovic T; Przulj N
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs.
    Huan J; Bandyopadhyay D; Wang W; Snoeyink J; Prins J; Tropsha A
    J Comput Biol; 2005; 12(6):657-71. PubMed ID: 16108709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring biological network structure with clustered random networks.
    Bansal S; Khandelwal S; Meyers LA
    BMC Bioinformatics; 2009 Dec; 10():405. PubMed ID: 20003212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling protein networks with power graph analysis.
    Royer L; Reimann M; Andreopoulos B; Schroeder M
    PLoS Comput Biol; 2008 Jul; 4(7):e1000108. PubMed ID: 18617988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance-based identification of structure motifs in proteins using constrained frequent subgraph mining.
    Huan J; Bandyopadhyay D; Prins J; Snoeyink J; Tropsha A; Wang W
    Comput Syst Bioinformatics Conf; 2006; ():227-38. PubMed ID: 17369641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GraphCrunch: a tool for large network analyses.
    Milenković T; Lai J; Przulj N
    BMC Bioinformatics; 2008 Jan; 9():70. PubMed ID: 18230190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein's structural organization.
    Sengupta D; Kundu S
    BMC Bioinformatics; 2012 Jun; 13():142. PubMed ID: 22720789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating confidence intervals on biological networks.
    Thorne T; Stumpf MP
    BMC Bioinformatics; 2007 Nov; 8():467. PubMed ID: 18053130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring community structure in biological networks with random graphs.
    Sah P; Singh LO; Clauset A; Bansal S
    BMC Bioinformatics; 2014 Jun; 15():220. PubMed ID: 24965130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CytoKavosh: a cytoscape plug-in for finding network motifs in large biological networks.
    Masoudi-Nejad A; Ansariola M; Kashani ZR; Salehzadeh-Yazdi A; Khakabimamaghani S
    PLoS One; 2012; 7(8):e43287. PubMed ID: 22952659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural comparison of metabolic networks in selected single cell organisms.
    Zhu D; Qin ZS
    BMC Bioinformatics; 2005 Jan; 6():8. PubMed ID: 15649332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetramer protein complex interface residue pairs prediction with LSTM combined with graph representations.
    Sun D; Gong X
    Biochim Biophys Acta Proteins Proteom; 2020 Nov; 1868(11):140504. PubMed ID: 32717382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs.
    Vlasblom J; Wodak SJ
    BMC Bioinformatics; 2009 Mar; 10():99. PubMed ID: 19331680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The construction of an amino acid network for understanding protein structure and function.
    Yan W; Zhou J; Sun M; Chen J; Hu G; Shen B
    Amino Acids; 2014 Jun; 46(6):1419-39. PubMed ID: 24623120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding hydrogen-bond patterns in proteins using network motifs.
    Rahat O; Alon U; Levy Y; Schreiber G
    Bioinformatics; 2009 Nov; 25(22):2921-8. PubMed ID: 19767299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Designability of Small Proteins from Graph Features of Contact Maps.
    Leelananda SP; Jernigan RL; Kloczkowski A
    J Comput Biol; 2016 May; 23(5):400-11. PubMed ID: 27159634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discriminating different classes of biological networks by analyzing the graphs spectra distribution.
    Takahashi DY; Sato JR; Ferreira CE; Fujita A
    PLoS One; 2012; 7(12):e49949. PubMed ID: 23284629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assortative mixing in Protein Contact Networks and protein folding kinetics.
    Bagler G; Sinha S
    Bioinformatics; 2007 Jul; 23(14):1760-7. PubMed ID: 17519248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.