These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 19557240)

  • 1. Optical fiber analyzer for in situ determination of nitrous oxide in workplace environments.
    Silva LI; Rocha-Santos TA; Duarte AC
    J Environ Monit; 2009 Apr; 11(4):852-7. PubMed ID: 19557240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote optical fibre microsensor for monitoring BTEX in confined industrial atmospheres.
    Silva LI; Rocha-Santos TA; Duarte AC
    Talanta; 2009 Apr; 78(2):548-52. PubMed ID: 19203622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occupational exposure to nitrous oxide - the role of scavenging and ventilation systems in reducing the exposure level in operating rooms.
    Krajewski W; Kucharska M; Wesolowski W; Stetkiewicz J; Wronska-Nofer T
    Int J Hyg Environ Health; 2007 Mar; 210(2):133-8. PubMed ID: 17045524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid phase microextraction-gas chromatographic-mass spectrometric determination of nitrous oxide evolution to measure denitrification in estuarine soils and sediments.
    Drescher SR; Brown SD
    J Chromatogr A; 2006 Nov; 1133(1-2):300-4. PubMed ID: 16965777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field evaluation of a transportable open-path FTIR spectrometer for real-time air monitoring.
    Ross KR; Todd LA
    Appl Occup Environ Hyg; 2002 Feb; 17(2):131-43. PubMed ID: 11843199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of one-step hollow fiber supported liquid phase sampling technique for occupational workplace air analysis using high performance liquid chromatography with ultra-violet detector.
    Yan CT; Chien HY
    J Chromatogr A; 2012 Jul; 1246():145-9. PubMed ID: 22673811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposal for single and mixture biological exposure limits for sevoflurane and nitrous oxide at low occupational exposure levels.
    Accorsi A; Valenti S; Barbieri A; Raffi GB; Violante FS
    Int Arch Occup Environ Health; 2003 Mar; 76(2):129-36. PubMed ID: 12733085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentrations of anaesthetic gases in hospital operating theatres.
    Sitarek K; Wesołowski W; Kucharska M; Celichowski G
    Int J Occup Med Environ Health; 2000; 13(1):61-6. PubMed ID: 10846846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for the determination of 2,2'-dichloro-4,4'-methylenedianiline in workplace air samples by HPLC-DAD.
    Jeżewska A; Buszewski B
    Toxicol Mech Methods; 2011 Sep; 21(7):554-60. PubMed ID: 21473712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrous oxide pollution in operating theatres in relation to the type of leakage and the number of efficacious air exchanges per hour.
    Sartini M; Ottria G; Dallera M; Spagnolo AM; Cristina ML
    J Prev Med Hyg; 2006 Dec; 47(4):155-9. PubMed ID: 17263163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical performance criteria: an improved gold amalgam method for measurement of mercury vapor in the workplace.
    Takaya M; Kohyama N
    J Occup Environ Hyg; 2004 Jul; 1(7):D75-9. PubMed ID: 15238320
    [No Abstract]   [Full Text] [Related]  

  • 12. [Evaluation of occupational exposure to inhalation anesthetics. Study Group on Environmental Monitoring, Biological Monitoring and Laboratory Surveillance in Lombardia].
    G Ital Med Lav; 1988 Mar; 10(2):49-55. PubMed ID: 3256515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of X-ray fluorescence and wet chemical analysis for lead on air filters from different personal samplers used in a bronze foundry.
    Harper M; Pacolay B; Andrew ME
    J Environ Monit; 2005 Jun; 7(6):592-7. PubMed ID: 15931420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-methylanthraquinone as a marker of occupational exposure to teak wood dust in boatyards.
    Gori G; Carrieri M; Scapellato ML; Parvoli G; Ferrara D; Rella R; Sturaro A; Bartolucci GB
    Ann Occup Hyg; 2009 Jan; 53(1):27-32. PubMed ID: 18977849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A personal sampling method for the determination of nitrous oxide exposure.
    Cox PC; Brown RH
    Am Ind Hyg Assoc J; 1984 May; 45(5):345-50. PubMed ID: 6741784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach to area sampling and analysis for total isocyanates in workplace air.
    Key-Schwartz RJ; Tucker SP
    Am Ind Hyg Assoc J; 1999; 60(2):200-7. PubMed ID: 10222570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field comparison between two nitrous oxide (N2O) passive monitors and conventional sampling methods.
    Bishop EC; Hossain MA
    Am Ind Hyg Assoc J; 1984 Dec; 45(12):812-6. PubMed ID: 6517026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and application of a long dynamic range nitrous oxide monitoring system.
    Ward BG
    Am Ind Hyg Assoc J; 1985 Dec; 46(12):697-703. PubMed ID: 4083251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-site monitoring of personal exposure to tetrachloroethylene at dry cleaning establishments.
    Keen C; Dabill DW; Groves JA
    Ann Occup Hyg; 1996 Jun; 40(3):281-92. PubMed ID: 8694491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of triglycidyl isocyanurate from powder coatings in occupational hygiene samples by gas chromatography with mass spectrometric detection.
    White J
    Ann Occup Hyg; 2004 Aug; 48(6):555-63. PubMed ID: 15292038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.